MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Structured version   Visualization version   GIF version

Theorem mulclprlem 9826
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem mulclprlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9798 . . . . . 6 ((𝐴P𝑔𝐴) → 𝑔Q)
2 elprnq 9798 . . . . . 6 ((𝐵P𝐵) → Q)
3 recclnq 9773 . . . . . . . . 9 (Q → (*Q) ∈ Q)
43adantl 482 . . . . . . . 8 ((𝑔QQ) → (*Q) ∈ Q)
5 vex 3198 . . . . . . . . 9 𝑥 ∈ V
6 ovex 6663 . . . . . . . . 9 (𝑔 ·Q ) ∈ V
7 ltmnq 9779 . . . . . . . . 9 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
8 fvex 6188 . . . . . . . . 9 (*Q) ∈ V
9 mulcomnq 9760 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
105, 6, 7, 8, 9caovord2 6831 . . . . . . . 8 ((*Q) ∈ Q → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
114, 10syl 17 . . . . . . 7 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
12 mulassnq 9766 . . . . . . . . . 10 ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q ( ·Q (*Q)))
13 recidnq 9772 . . . . . . . . . . 11 (Q → ( ·Q (*Q)) = 1Q)
1413oveq2d 6651 . . . . . . . . . 10 (Q → (𝑔 ·Q ( ·Q (*Q))) = (𝑔 ·Q 1Q))
1512, 14syl5eq 2666 . . . . . . . . 9 (Q → ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q 1Q))
16 mulidnq 9770 . . . . . . . . 9 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1715, 16sylan9eqr 2676 . . . . . . . 8 ((𝑔QQ) → ((𝑔 ·Q ) ·Q (*Q)) = 𝑔)
1817breq2d 4656 . . . . . . 7 ((𝑔QQ) → ((𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q)) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
1911, 18bitrd 268 . . . . . 6 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
201, 2, 19syl2an 494 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
21 prcdnq 9800 . . . . . 6 ((𝐴P𝑔𝐴) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2221adantr 481 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2320, 22sylbid 230 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → (𝑥 ·Q (*Q)) ∈ 𝐴))
24 df-mp 9791 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
25 mulclnq 9754 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
2624, 25genpprecl 9808 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑥 ·Q (*Q)) ∈ 𝐴𝐵) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
2726exp4b 631 . . . . . . 7 (𝐴P → (𝐵P → ((𝑥 ·Q (*Q)) ∈ 𝐴 → (𝐵 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2827com34 91 . . . . . 6 (𝐴P → (𝐵P → (𝐵 → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2928imp32 449 . . . . 5 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3029adantlr 750 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3123, 30syld 47 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3231adantr 481 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
332adantl 482 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → Q)
34 mulassnq 9766 . . . . . 6 ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q ((*Q) ·Q ))
35 mulcomnq 9760 . . . . . . . 8 ((*Q) ·Q ) = ( ·Q (*Q))
3635, 13syl5eq 2666 . . . . . . 7 (Q → ((*Q) ·Q ) = 1Q)
3736oveq2d 6651 . . . . . 6 (Q → (𝑥 ·Q ((*Q) ·Q )) = (𝑥 ·Q 1Q))
3834, 37syl5eq 2666 . . . . 5 (Q → ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q 1Q))
39 mulidnq 9770 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
4038, 39sylan9eq 2674 . . . 4 ((Q𝑥Q) → ((𝑥 ·Q (*Q)) ·Q ) = 𝑥)
4140eleq1d 2684 . . 3 ((Q𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4233, 41sylan 488 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4332, 42sylibd 229 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635  Qcnq 9659  1Qc1q 9660   ·Q cmq 9663  *Qcrq 9664   <Q cltq 9665  Pcnp 9666   ·P cmp 9669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-omul 7550  df-er 7727  df-ni 9679  df-mi 9681  df-lti 9682  df-mpq 9716  df-ltpq 9717  df-enq 9718  df-nq 9719  df-erq 9720  df-mq 9722  df-1nq 9723  df-rq 9724  df-ltnq 9725  df-np 9788  df-mp 9791
This theorem is referenced by:  mulclpr  9827
  Copyright terms: Public domain W3C validator