![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 10204 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2131 (class class class)co 6805 ℂcc 10118 · cmul 10125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 10182 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: mul02lem2 10397 addid1 10400 cnegex2 10402 ixi 10840 2mulicn 11439 numma 11741 nummac 11742 9t11e99 11855 9t11e99OLD 11856 decbin2 11867 irec 13150 binom2i 13160 crreczi 13175 3dec 13236 sq10OLD 13237 3decOLD 13239 nn0opthi 13243 faclbnd4lem1 13266 rei 14087 imi 14088 iseraltlem2 14604 bpoly3 14980 bpoly4 14981 3dvdsdec 15248 3dvdsdecOLD 15249 3dvds2dec 15250 3dvds2decOLD 15251 odd2np1 15259 gcdaddmlem 15439 3lcm2e6woprm 15522 6lcm4e12 15523 modxai 15966 mod2xnegi 15969 decexp2 15973 decsplitOLD 15985 karatsuba 15986 karatsubaOLD 15987 sinhalfpilem 24406 ef2pi 24420 ef2kpi 24421 efper 24422 sinperlem 24423 sin2kpi 24426 cos2kpi 24427 sin2pim 24428 cos2pim 24429 sincos4thpi 24456 sincos6thpi 24458 pige3 24460 abssinper 24461 efeq1 24466 logneg 24525 logm1 24526 eflogeq 24539 logimul 24551 logneg2 24552 cxpsqrt 24640 root1eq1 24687 cxpeq 24689 ang180lem1 24730 ang180lem3 24732 ang180lem4 24733 1cubrlem 24759 1cubr 24760 quart1lem 24773 asin1 24812 atanlogsublem 24833 log2ublem2 24865 log2ublem3 24866 log2ub 24867 bclbnd 25196 bposlem8 25207 bposlem9 25208 lgsdir2lem5 25245 2lgsoddprmlem3c 25328 2lgsoddprmlem3d 25329 ax5seglem7 26006 ip0i 27981 ip1ilem 27982 ipasslem10 27995 siilem1 28007 normlem0 28267 normlem1 28268 normlem2 28269 normlem3 28270 normlem5 28272 normlem7 28274 bcseqi 28278 norm-ii-i 28295 normpar2i 28314 polid2i 28315 h1de2i 28713 lnopunilem1 29170 lnophmlem2 29177 dfdec100 29877 dpmul100 29906 dp3mul10 29907 dpmul1000 29908 dpexpp1 29917 dpmul 29922 dpmul4 29923 ballotth 30900 efmul2picn 30975 itgexpif 30985 vtscl 31017 circlemeth 31019 hgt750lem 31030 problem2 31858 problem2OLD 31859 problem4 31861 quad3 31863 logi 31919 heiborlem6 33920 proot1ex 38273 areaquad 38296 coskpi2 40572 cosnegpi 40573 cosknegpi 40575 wallispilem4 40780 dirkerper 40808 dirkertrigeq 40813 dirkercncflem2 40816 fourierdlem57 40875 fourierdlem62 40880 fourierswlem 40942 fmtnorec3 41962 fmtnorec4 41963 lighneallem3 42026 3exp4mod41 42035 41prothprmlem1 42036 zlmodzxzequap 42790 nn0sumshdiglemB 42916 i2linesi 43029 |
Copyright terms: Public domain | W3C validator |