MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Visualization version   GIF version

Theorem mulcand 10872
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1 (𝜑𝐴 ∈ ℂ)
mulcand.2 (𝜑𝐵 ∈ ℂ)
mulcand.3 (𝜑𝐶 ∈ ℂ)
mulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
mulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem mulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
2 mulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 recex 10871 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 696 . . 3 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
5 oveq2 6822 . . . 4 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
6 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
71adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ)
86, 7mulcomd 10273 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥))
9 simprr 813 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1)
108, 9eqtrd 2794 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1)
1110oveq1d 6829 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
12 mulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1312adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
146, 7, 13mulassd 10275 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
1513mulid2d 10270 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴)
1611, 14, 153eqtr3d 2802 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
1710oveq1d 6829 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
18 mulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1918adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
206, 7, 19mulassd 10275 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
2119mulid2d 10270 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵)
2217, 20, 213eqtr3d 2802 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
2316, 22eqeq12d 2775 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵))
245, 23syl5ib 234 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
254, 24rexlimddv 3173 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
26 oveq2 6822 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
2725, 26impbid1 215 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   · cmul 10153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481
This theorem is referenced by:  mulcan2d  10873  mulcanad  10874  mulcan  10876  div11  10925  eqneg  10957  qredeq  15593  cncongr1  15603  prmirredlem  20063  tanarg  24585  quad2  24786  atandm2  24824  lgseisenlem2  25321  frrusgrord0  27515
  Copyright terms: Public domain W3C validator