![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcand | Structured version Visualization version GIF version |
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mulcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mulcand.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
mulcand | ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | mulcand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0) | |
3 | recex 10871 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) | |
4 | 1, 2, 3 | syl2anc 696 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) |
5 | oveq2 6822 | . . . 4 ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵))) | |
6 | simprl 811 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ) | |
7 | 1 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ) |
8 | 6, 7 | mulcomd 10273 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥)) |
9 | simprr 813 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1) | |
10 | 8, 9 | eqtrd 2794 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1) |
11 | 10 | oveq1d 6829 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴)) |
12 | mulcand.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | 12 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
14 | 6, 7, 13 | mulassd 10275 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴))) |
15 | 13 | mulid2d 10270 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
16 | 11, 14, 15 | 3eqtr3d 2802 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴) |
17 | 10 | oveq1d 6829 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵)) |
18 | mulcand.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
19 | 18 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ) |
20 | 6, 7, 19 | mulassd 10275 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵))) |
21 | 19 | mulid2d 10270 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵) |
22 | 17, 20, 21 | 3eqtr3d 2802 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵) |
23 | 16, 22 | eqeq12d 2775 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵)) |
24 | 5, 23 | syl5ib 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
25 | 4, 24 | rexlimddv 3173 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
26 | oveq2 6822 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) | |
27 | 25, 26 | impbid1 215 | 1 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 (class class class)co 6814 ℂcc 10146 0cc0 10148 1c1 10149 · cmul 10153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 |
This theorem is referenced by: mulcan2d 10873 mulcanad 10874 mulcan 10876 div11 10925 eqneg 10957 qredeq 15593 cncongr1 15603 prmirredlem 20063 tanarg 24585 quad2 24786 atandm2 24824 lgseisenlem2 25321 frrusgrord0 27515 |
Copyright terms: Public domain | W3C validator |