MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulc1cncf Structured version   Visualization version   GIF version

Theorem mulc1cncf 22928
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
Assertion
Ref Expression
mulc1cncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mulc1cncf
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 10222 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 mulc1cncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
31, 2fmptd 6527 . 2 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
4 simprr 756 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
5 simpl 468 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
6 simprl 754 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ ℂ)
7 mulcn2 14534 . . . . 5 ((𝑧 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
84, 5, 6, 7syl3anc 1476 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
9 fvoveq1 6816 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (abs‘(𝑣𝐴)) = (abs‘(𝐴𝐴)))
109breq1d 4796 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → ((abs‘(𝑣𝐴)) < 𝑡 ↔ (abs‘(𝐴𝐴)) < 𝑡))
1110anbi1d 615 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
12 oveq1 6800 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (𝑣 · 𝑢) = (𝐴 · 𝑢))
1312fvoveq1d 6815 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
1413breq1d 4796 . . . . . . . . . . . 12 (𝑣 = 𝐴 → ((abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
1511, 14imbi12d 333 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1615ralbidv 3135 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1716rspcv 3456 . . . . . . . . 9 (𝐴 ∈ ℂ → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1817ad2antrr 705 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
19 subid 10502 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
2019ad2antrr 705 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴𝐴) = 0)
2120abs00bd 14239 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) = 0)
22 simprll 764 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑡 ∈ ℝ+)
2322rpgt0d 12078 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 0 < 𝑡)
2421, 23eqbrtrd 4808 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) < 𝑡)
2524biantrurd 522 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘(𝑢𝑦)) < 𝑤 ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
26 simprr 756 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑢 ∈ ℂ)
27 oveq2 6801 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
28 ovex 6823 . . . . . . . . . . . . . . . 16 (𝐴 · 𝑢) ∈ V
2927, 2, 28fvmpt 6424 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℂ → (𝐹𝑢) = (𝐴 · 𝑢))
3026, 29syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑢) = (𝐴 · 𝑢))
31 simplrl 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑦 ∈ ℂ)
32 oveq2 6801 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
33 ovex 6823 . . . . . . . . . . . . . . . 16 (𝐴 · 𝑦) ∈ V
3432, 2, 33fvmpt 6424 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝐹𝑦) = (𝐴 · 𝑦))
3531, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑦) = (𝐴 · 𝑦))
3630, 35oveq12d 6811 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((𝐹𝑢) − (𝐹𝑦)) = ((𝐴 · 𝑢) − (𝐴 · 𝑦)))
3736fveq2d 6336 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘((𝐹𝑢) − (𝐹𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
3837breq1d 4796 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
3925, 38imbi12d 333 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4039anassrs 458 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) ∧ 𝑢 ∈ ℂ) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4140ralbidva 3134 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4218, 41sylibrd 249 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4342anassrs 458 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4443reximdva 3165 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4544rexlimdva 3179 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → (∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
468, 45mpd 15 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
4746ralrimivva 3120 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
48 ssid 3773 . . 3 ℂ ⊆ ℂ
49 elcncf2 22913 . . 3 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))))
5048, 48, 49mp2an 672 . 2 (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
513, 47, 50sylanbrc 572 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723   class class class wbr 4786  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138   · cmul 10143   < clt 10276  cmin 10468  +crp 12035  abscabs 14182  cnccncf 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-cncf 22901
This theorem is referenced by:  divccncf  22929  sincn  24418  coscn  24419  logcn  24614  itgexpif  31024  mulc1cncfg  40339  dirkeritg  40836  dirkercncflem2  40838
  Copyright terms: Public domain W3C validator