![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulasspi | Structured version Visualization version GIF version |
Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulasspi | ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 9892 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 9892 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 9892 | . . . 4 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnmass 7873 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) | |
5 | 1, 2, 3, 4 | syl3an 1164 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) |
6 | mulclpi 9907 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
7 | mulpiord 9899 | . . . . . 6 ⊢ (((𝐴 ·N 𝐵) ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·𝑜 𝐶)) | |
8 | 6, 7 | sylan 489 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·𝑜 𝐶)) |
9 | mulpiord 9899 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) | |
10 | 9 | oveq1d 6828 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶)) |
11 | 10 | adantr 472 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶)) |
12 | 8, 11 | eqtrd 2794 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶)) |
13 | 12 | 3impa 1101 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶)) |
14 | mulclpi 9907 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) ∈ N) | |
15 | mulpiord 9899 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·N 𝐶))) | |
16 | 14, 15 | sylan2 492 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·N 𝐶))) |
17 | mulpiord 9899 | . . . . . . 7 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) = (𝐵 ·𝑜 𝐶)) | |
18 | 17 | oveq2d 6829 | . . . . . 6 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·𝑜 (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) |
19 | 18 | adantl 473 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·𝑜 (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) |
20 | 16, 19 | eqtrd 2794 | . . . 4 ⊢ ((𝐴 ∈ N ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) |
21 | 20 | 3impb 1108 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))) |
22 | 5, 13, 21 | 3eqtr4d 2804 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
23 | dmmulpi 9905 | . . 3 ⊢ dom ·N = (N × N) | |
24 | 0npi 9896 | . . 3 ⊢ ¬ ∅ ∈ N | |
25 | 23, 24 | ndmovass 6987 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶))) |
26 | 22, 25 | pm2.61i 176 | 1 ⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ωcom 7230 ·𝑜 comu 7727 Ncnpi 9858 ·N cmi 9860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-oadd 7733 df-omul 7734 df-ni 9886 df-mi 9888 |
This theorem is referenced by: enqer 9935 adderpqlem 9968 mulerpqlem 9969 addassnq 9972 mulassnq 9973 mulcanenq 9974 distrnq 9975 ltsonq 9983 lterpq 9984 ltanq 9985 ltmnq 9986 ltexnq 9989 |
Copyright terms: Public domain | W3C validator |