![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 10236 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1573 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 · cmul 10153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 10214 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 8th4div3 11464 numma 11769 decbin0 11894 sq4e2t8 13176 3dec 13264 3decOLD 13267 faclbnd4lem1 13294 ef01bndlem 15133 3dvdsdec 15276 3dvdsdecOLD 15277 3dvds2dec 15278 3dvds2decOLD 15279 dec5dvds 15990 karatsuba 16014 karatsubaOLD 16015 sincos4thpi 24485 sincos6thpi 24487 ang180lem2 24760 ang180lem3 24761 asin1 24841 efiatan2 24864 2efiatan 24865 log2cnv 24891 log2ublem2 24894 log2ublem3 24895 log2ub 24896 bclbnd 25225 bposlem8 25236 2lgsoddprmlem3d 25358 ax5seglem7 26035 ipasslem10 28024 siilem1 28036 normlem0 28296 normlem9 28305 bcseqi 28307 polid2i 28344 dfdec100 29906 dpmul100 29935 dpmul1000 29937 dpexpp1 29946 dpmul4 29952 quad3 31892 iexpire 31949 fourierswlem 40968 fouriersw 40969 41prothprm 42064 tgoldbachlt 42232 tgoldbachltOLD 42238 |
Copyright terms: Public domain | W3C validator |