MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2lt0rlt0 Structured version   Visualization version   GIF version

Theorem mul2lt0rlt0 12145
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
mul2lt0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
mul2lt0rlt0 ((𝜑𝐵 < 0) → 0 < 𝐴)

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 10282 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
43adantr 472 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ)
5 0red 10253 . . . 4 ((𝜑𝐵 < 0) → 0 ∈ ℝ)
6 negelrp 12077 . . . . . 6 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
72, 6syl 17 . . . . 5 (𝜑 → (-𝐵 ∈ ℝ+𝐵 < 0))
87biimpar 503 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℝ+)
9 mul2lt0.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) < 0)
109adantr 472 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) < 0)
114, 5, 8, 10ltdiv1dd 12142 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵))
121recnd 10280 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1312adantr 472 . . . . . 6 ((𝜑𝐵 < 0) → 𝐴 ∈ ℂ)
142recnd 10280 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1514adantr 472 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 ∈ ℂ)
1613, 15mulcld 10272 . . . . 5 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ)
17 simpr 479 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 < 0)
1817lt0ne0d 10805 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 ≠ 0)
1916, 15, 18divneg2d 11027 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵))
2013, 15, 18divcan4d 11019 . . . . 5 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2120negeqd 10487 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴)
2219, 21eqtr3d 2796 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴)
2315negcld 10591 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℂ)
2415, 18negne0d 10602 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ≠ 0)
2523, 24div0d 11012 . . 3 ((𝜑𝐵 < 0) → (0 / -𝐵) = 0)
2611, 22, 253brtr3d 4835 . 2 ((𝜑𝐵 < 0) → -𝐴 < 0)
271adantr 472 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ ℝ)
2827lt0neg2d 10810 . 2 ((𝜑𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0))
2926, 28mpbird 247 1 ((𝜑𝐵 < 0) → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139   class class class wbr 4804  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   · cmul 10153   < clt 10286  -cneg 10479   / cdiv 10896  +crp 12045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-rp 12046
This theorem is referenced by:  mul2lt0llt0  12147  mul2lt0bi  12149  sgnmul  30934  signsply0  30958
  Copyright terms: Public domain W3C validator