![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul12i | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
mul.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mul12i | ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mul12 10408 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1572 | 1 ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6796 ℂcc 10140 · cmul 10147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-mulcom 10206 ax-mulass 10208 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-ov 6799 |
This theorem is referenced by: decmul10add 11799 decmul10addOLD 11800 faclbnd4lem1 13284 bpoly3 14995 decsplit 15994 decsplitOLD 15998 root1eq1 24717 cxpeq 24719 1cubrlem 24789 efiatan2 24865 2efiatan 24866 tanatan 24867 log2ublem2 24895 log2ublem3 24896 bposlem8 25237 ax5seglem7 26036 ip1ilem 28021 ipasslem10 28034 polid2i 28354 3exp4mod41 42058 |
Copyright terms: Public domain | W3C validator |