![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtoi | Structured version Visualization version GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 189 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 315 mtbiri 316 axc10 2288 ssdifsn 4351 pwnss 4860 eunex 4889 nsuceq0 5843 onssnel2i 5876 abnex 7007 ssonprc 7034 reldmtpos 7405 dmtpos 7409 tfrlem15 7533 tz7.44-2 7548 tz7.48-3 7584 2pwuninel 8156 2pwne 8157 nnsdomg 8260 r111 8676 r1pwss 8685 wfelirr 8726 rankxplim3 8782 carduni 8845 pr2ne 8866 alephle 8949 alephfp 8969 pwcdadom 9076 cfsuc 9117 fin23lem28 9200 fin23lem30 9202 isfin1-2 9245 ac5b 9338 zorn2lem4 9359 zorn2lem7 9362 cfpwsdom 9444 nd1 9447 nd2 9448 canthp1 9514 pwfseqlem1 9518 gchhar 9539 winalim2 9556 ltxrlt 10146 recgt0 10905 nnunb 11326 indstr 11794 wrdlen2i 13732 rlimno1 14428 lcmfnncl 15389 isprm2 15442 nprmdvds1 15465 divgcdodd 15469 coprm 15470 ramtcl2 15762 psgnunilem3 17962 torsubg 18303 prmcyg 18341 dprd2da 18487 prmirredlem 19889 pnfnei 21072 mnfnei 21073 1stccnp 21313 uzfbas 21749 ufinffr 21780 fin1aufil 21783 ovolunlem1a 23310 itg2gt0 23572 lgsquad2lem2 25155 dirith2 25262 umgrnloop0 26049 usgrnloop0ALT 26142 nfrgr2v 27252 hon0 28780 ifeqeqx 29487 dfon2lem7 31818 soseq 31879 noseponlem 31942 nosepssdm 31961 nodenselem8 31966 nolt02o 31970 bj-axc10v 32842 bj-eunex 32924 areacirclem4 33633 fdc 33671 dihglblem6 36946 pellexlem6 37715 pw2f1ocnv 37921 wepwsolem 37929 axc5c4c711toc5 38920 lptioo2 40181 lptioo1 40182 1neven 42257 |
Copyright terms: Public domain | W3C validator |