![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmval | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmval | ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.u | . 2 ⊢ 𝑈 = (mThm‘𝑇) | |
2 | fveq2 6354 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mthmval.r | . . . . . . 7 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | syl6eqr 2813 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | cnveqd 5454 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡(mStRed‘𝑡) = ◡𝑅) |
6 | fveq2 6354 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇)) | |
7 | mthmval.j | . . . . . . 7 ⊢ 𝐽 = (mPPSt‘𝑇) | |
8 | 6, 7 | syl6eqr 2813 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽) |
9 | 4, 8 | imaeq12d 5626 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅 “ 𝐽)) |
10 | 5, 9 | imaeq12d 5626 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (◡𝑅 “ (𝑅 “ 𝐽))) |
11 | df-mthm 31725 | . . . 4 ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | |
12 | fvex 6364 | . . . . . 6 ⊢ (mStRed‘𝑡) ∈ V | |
13 | 12 | cnvex 7280 | . . . . 5 ⊢ ◡(mStRed‘𝑡) ∈ V |
14 | imaexg 7270 | . . . . 5 ⊢ (◡(mStRed‘𝑡) ∈ V → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V |
16 | 10, 11, 15 | fvmpt3i 6451 | . . 3 ⊢ (𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
17 | 0ima 5641 | . . . . 5 ⊢ (∅ “ (𝑅 “ 𝐽)) = ∅ | |
18 | 17 | eqcomi 2770 | . . . 4 ⊢ ∅ = (∅ “ (𝑅 “ 𝐽)) |
19 | fvprc 6348 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = ∅) | |
20 | fvprc 6348 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
21 | 3, 20 | syl5eq 2807 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
22 | 21 | cnveqd 5454 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ◡∅) |
23 | cnv0 5694 | . . . . . 6 ⊢ ◡∅ = ∅ | |
24 | 22, 23 | syl6eq 2811 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ∅) |
25 | 24 | imaeq1d 5624 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (◡𝑅 “ (𝑅 “ 𝐽)) = (∅ “ (𝑅 “ 𝐽))) |
26 | 18, 19, 25 | 3eqtr4a 2821 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
27 | 16, 26 | pm2.61i 176 | . 2 ⊢ (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽)) |
28 | 1, 27 | eqtri 2783 | 1 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 ◡ccnv 5266 “ cima 5270 ‘cfv 6050 mStRedcmsr 31700 mPPStcmpps 31704 mThmcmthm 31705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fv 6058 df-mthm 31725 |
This theorem is referenced by: elmthm 31802 mthmsta 31804 mthmblem 31806 |
Copyright terms: Public domain | W3C validator |