![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmsta | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmsta.u | ⊢ 𝑈 = (mThm‘𝑇) |
mthmsta.s | ⊢ 𝑆 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
mthmsta | ⊢ 𝑈 ⊆ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | eqid 2761 | . . 3 ⊢ (mPPSt‘𝑇) = (mPPSt‘𝑇) | |
3 | mthmsta.u | . . 3 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 31801 | . 2 ⊢ 𝑈 = (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) |
5 | cnvimass 5644 | . . 3 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ dom (mStRed‘𝑇) | |
6 | mthmsta.s | . . . . 5 ⊢ 𝑆 = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 31768 | . . . 4 ⊢ (mStRed‘𝑇):𝑆⟶𝑆 |
8 | 7 | fdmi 6214 | . . 3 ⊢ dom (mStRed‘𝑇) = 𝑆 |
9 | 5, 8 | sseqtri 3779 | . 2 ⊢ (◡(mStRed‘𝑇) “ ((mStRed‘𝑇) “ (mPPSt‘𝑇))) ⊆ 𝑆 |
10 | 4, 9 | eqsstri 3777 | 1 ⊢ 𝑈 ⊆ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⊆ wss 3716 ◡ccnv 5266 dom cdm 5267 “ cima 5270 ‘cfv 6050 mPreStcmpst 31699 mStRedcmsr 31700 mPPStcmpps 31704 mThmcmthm 31705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-ot 4331 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-1st 7335 df-2nd 7336 df-mpst 31719 df-msr 31720 df-mthm 31725 |
This theorem is referenced by: mthmpps 31808 |
Copyright terms: Public domain | W3C validator |