![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbi | Structured version Visualization version GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mtbi.1 | ⊢ ¬ 𝜑 |
mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbi | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | biimpri 218 | . 2 ⊢ (𝜓 → 𝜑) |
4 | 1, 3 | mto 188 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: mtbir 312 vprc 4829 vnex 4831 opthwiener 5005 harndom 8510 alephprc 8960 unialeph 8962 ndvdsi 15183 bitsfzo 15204 nprmi 15449 dec2dvds 15814 dec5dvds2 15816 mreexmrid 16350 sinhalfpilem 24260 ppi2i 24940 axlowdimlem13 25879 ex-mod 27436 measvuni 30405 ballotlem2 30678 sgnmulsgp 30740 bnj1224 30998 bnj1541 31052 bnj1311 31218 dfon2lem7 31818 onsucsuccmpi 32567 bj-imn3ani 32697 bj-0nelmpt 33194 bj-pinftynminfty 33244 poimirlem30 33569 clsk1indlem4 38659 alimp-no-surprise 42855 |
Copyright terms: Public domain | W3C validator |