![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt2 | Structured version Visualization version GIF version |
Description: A rule similar to modus tollens. Inference associated with con2i 134. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Sep-2013.) |
Ref | Expression |
---|---|
mt2.1 | ⊢ 𝜓 |
mt2.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
mt2 | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mt2.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
4 | 2, 3 | pm2.65i 185 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: bijust 195 ax6dgen 2045 elirrv 8542 cardom 8850 0nnn 11090 nthruz 15026 hauspwdom 21352 fin1aufil 21783 rectbntr0 22682 lgam1 24835 gam1 24836 konigsberg 27235 ex-po 27422 strlem1 29237 eulerpartlemt 30561 nalf 32527 finxpreclem3 33360 |
Copyright terms: Public domain | W3C validator |