Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubvrs Structured version   Visualization version   GIF version

Theorem msubvrs 31812
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubvrs.s 𝑆 = (mSubst‘𝑇)
msubvrs.e 𝐸 = (mEx‘𝑇)
msubvrs.v 𝑉 = (mVars‘𝑇)
msubvrs.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
msubvrs ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝑥,𝑉
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem msubvrs
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubvrs.e . . . . . 6 𝐸 = (mEx‘𝑇)
2 eqid 2774 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubvrs.s . . . . . 6 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 31780 . . . . 5 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
54eleq2i 2845 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
6 eqid 2774 . . . . 5 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
71fvexi 6360 . . . . . 6 𝐸 ∈ V
87mptex 6649 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) ∈ V
96, 8elrnmpti 5526 . . . 4 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
105, 9bitri 265 . . 3 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
11 simp2 1158 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓 ∈ ran (mRSubst‘𝑇))
12 simp3 1159 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋𝐸)
13 eqid 2774 . . . . . . . . . . . 12 (mTC‘𝑇) = (mTC‘𝑇)
14 eqid 2774 . . . . . . . . . . . 12 (mREx‘𝑇) = (mREx‘𝑇)
1513, 1, 14mexval 31754 . . . . . . . . . . 11 𝐸 = ((mTC‘𝑇) × (mREx‘𝑇))
1612, 15syl6eleq 2863 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
17 xp2nd 7369 . . . . . . . . . 10 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑋) ∈ (mREx‘𝑇))
1816, 17syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
19 eqid 2774 . . . . . . . . . 10 (mVR‘𝑇) = (mVR‘𝑇)
202, 19, 14mrsubvrs 31774 . . . . . . . . 9 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ (2nd𝑋) ∈ (mREx‘𝑇)) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
2111, 18, 20syl2anc 574 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
22 fveq2 6348 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (1st𝑒) = (1st𝑋))
23 2fveq3 6353 . . . . . . . . . . . . 13 (𝑒 = 𝑋 → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd𝑋)))
2422, 23opeq12d 4558 . . . . . . . . . . . 12 (𝑒 = 𝑋 → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
25 eqid 2774 . . . . . . . . . . . 12 (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)
26 opex 5074 . . . . . . . . . . . 12 ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ ∈ V
2724, 25, 26fvmpt3i 6446 . . . . . . . . . . 11 (𝑋𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2812, 27syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋) = ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩)
2928fveq2d 6352 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩))
30 xp1st 7368 . . . . . . . . . . . . 13 (𝑋 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑋) ∈ (mTC‘𝑇))
3116, 30syl 17 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (1st𝑋) ∈ (mTC‘𝑇))
322, 14mrsubf 31769 . . . . . . . . . . . . . 14 (𝑓 ∈ ran (mRSubst‘𝑇) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3311, 32syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
3417, 15eleq2s 2871 . . . . . . . . . . . . . 14 (𝑋𝐸 → (2nd𝑋) ∈ (mREx‘𝑇))
3512, 34syl 17 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd𝑋) ∈ (mREx‘𝑇))
3633, 35ffvelrnd 6520 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇))
37 opelxpi 5300 . . . . . . . . . . . 12 (((1st𝑋) ∈ (mTC‘𝑇) ∧ (𝑓‘(2nd𝑋)) ∈ (mREx‘𝑇)) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3831, 36, 37syl2anc 574 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3938, 15syl6eleqr 2864 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸)
40 msubvrs.v . . . . . . . . . . 11 𝑉 = (mVars‘𝑇)
4119, 1, 40mvrsval 31757 . . . . . . . . . 10 (⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩ ∈ 𝐸 → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
4239, 41syl 17 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)))
43 fvex 6359 . . . . . . . . . . . . 13 (1st𝑋) ∈ V
44 fvex 6359 . . . . . . . . . . . . 13 (𝑓‘(2nd𝑋)) ∈ V
4543, 44op2nd 7345 . . . . . . . . . . . 12 (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋))
4645a1i 11 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = (𝑓‘(2nd𝑋)))
4746rneqd 5503 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) = ran (𝑓‘(2nd𝑋)))
4847ineq1d 3971 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (ran (2nd ‘⟨(1st𝑋), (𝑓‘(2nd𝑋))⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
4929, 42, 483eqtrd 2812 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = (ran (𝑓‘(2nd𝑋)) ∩ (mVR‘𝑇)))
5019, 1, 40mvrsval 31757 . . . . . . . . . . 11 (𝑋𝐸 → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5112, 50syl 17 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉𝑋) = (ran (2nd𝑋) ∩ (mVR‘𝑇)))
5251iuneq1d 4690 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
53 msubvrs.h . . . . . . . . . . . . . . . . 17 𝐻 = (mVH‘𝑇)
5419, 1, 53mvhf 31810 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → 𝐻:(mVR‘𝑇)⟶𝐸)
55543ad2ant1 1154 . . . . . . . . . . . . . . 15 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝐻:(mVR‘𝑇)⟶𝐸)
56 inss2 3989 . . . . . . . . . . . . . . . 16 (ran (2nd𝑋) ∩ (mVR‘𝑇)) ⊆ (mVR‘𝑇)
5756sseli 3754 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇)) → 𝑥 ∈ (mVR‘𝑇))
58 ffvelrn 6517 . . . . . . . . . . . . . . 15 ((𝐻:(mVR‘𝑇)⟶𝐸𝑥 ∈ (mVR‘𝑇)) → (𝐻𝑥) ∈ 𝐸)
5955, 57, 58syl2an 584 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) ∈ 𝐸)
60 fveq2 6348 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (1st𝑒) = (1st ‘(𝐻𝑥)))
61 2fveq3 6353 . . . . . . . . . . . . . . . 16 (𝑒 = (𝐻𝑥) → (𝑓‘(2nd𝑒)) = (𝑓‘(2nd ‘(𝐻𝑥))))
6260, 61opeq12d 4558 . . . . . . . . . . . . . . 15 (𝑒 = (𝐻𝑥) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6362, 25, 26fvmpt3i 6446 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ 𝐸 → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6459, 63syl 17 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩)
6557adantl 468 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ (mVR‘𝑇))
66 eqid 2774 . . . . . . . . . . . . . . . . 17 (mType‘𝑇) = (mType‘𝑇)
6719, 66, 53mvhval 31786 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (mVR‘𝑇) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
6865, 67syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩)
69 fvex 6359 . . . . . . . . . . . . . . . 16 ((mType‘𝑇)‘𝑥) ∈ V
70 s1cli 13607 . . . . . . . . . . . . . . . . 17 ⟨“𝑥”⟩ ∈ Word V
7170elexi 3370 . . . . . . . . . . . . . . . 16 ⟨“𝑥”⟩ ∈ V
7269, 71op1std 7346 . . . . . . . . . . . . . . 15 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7368, 72syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (1st ‘(𝐻𝑥)) = ((mType‘𝑇)‘𝑥))
7469, 71op2ndd 7347 . . . . . . . . . . . . . . . 16 ((𝐻𝑥) = ⟨((mType‘𝑇)‘𝑥), ⟨“𝑥”⟩⟩ → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7568, 74syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘(𝐻𝑥)) = ⟨“𝑥”⟩)
7675fveq2d 6352 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘(2nd ‘(𝐻𝑥))) = (𝑓‘⟨“𝑥”⟩))
7773, 76opeq12d 4558 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨(1st ‘(𝐻𝑥)), (𝑓‘(2nd ‘(𝐻𝑥)))⟩ = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7864, 77eqtrd 2808 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)) = ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩)
7978fveq2d 6352 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩))
80 simpl1 1233 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑇 ∈ mFS)
8119, 13, 66mtyf2 31803 . . . . . . . . . . . . . . . 16 (𝑇 ∈ mFS → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8280, 81syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mType‘𝑇):(mVR‘𝑇)⟶(mTC‘𝑇))
8382, 65ffvelrnd 6520 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇))
8433adantr 467 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑓:(mREx‘𝑇)⟶(mREx‘𝑇))
85 elun2 3939 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mVR‘𝑇) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8665, 85syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → 𝑥 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
8786s1cld 13605 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
88 eqid 2774 . . . . . . . . . . . . . . . . . 18 (mCN‘𝑇) = (mCN‘𝑇)
8988, 19, 14mrexval 31753 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9080, 89syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
9187, 90eleqtrrd 2856 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨“𝑥”⟩ ∈ (mREx‘𝑇))
9284, 91ffvelrnd 6520 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇))
93 opelxpi 5300 . . . . . . . . . . . . . 14 ((((mType‘𝑇)‘𝑥) ∈ (mTC‘𝑇) ∧ (𝑓‘⟨“𝑥”⟩) ∈ (mREx‘𝑇)) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9483, 92, 93syl2anc 574 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
9594, 15syl6eleqr 2864 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸)
9619, 1, 40mvrsval 31757 . . . . . . . . . . . 12 (⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩ ∈ 𝐸 → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
9795, 96syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)))
98 fvex 6359 . . . . . . . . . . . . . . 15 (𝑓‘⟨“𝑥”⟩) ∈ V
9969, 98op2nd 7345 . . . . . . . . . . . . . 14 (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩)
10099a1i 11 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = (𝑓‘⟨“𝑥”⟩))
101100rneqd 5503 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) = ran (𝑓‘⟨“𝑥”⟩))
102101ineq1d 3971 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (ran (2nd ‘⟨((mType‘𝑇)‘𝑥), (𝑓‘⟨“𝑥”⟩)⟩) ∩ (mVR‘𝑇)) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10379, 97, 1023eqtrd 2812 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) ∧ 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = (ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
104103iuneq2dv 4687 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10552, 104eqtrd 2808 . . . . . . . 8 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))) = 𝑥 ∈ (ran (2nd𝑋) ∩ (mVR‘𝑇))(ran (𝑓‘⟨“𝑥”⟩) ∩ (mVR‘𝑇)))
10621, 49, 1053eqtr4d 2818 . . . . . . 7 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
107 fveq1 6347 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹𝑋) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋))
108107fveq2d 6352 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)))
109 fveq1 6347 . . . . . . . . . 10 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝐹‘(𝐻𝑥)) = ((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))
110109fveq2d 6352 . . . . . . . . 9 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹‘(𝐻𝑥))) = (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
111110iuneq2d 4692 . . . . . . . 8 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥))))
112108, 111eqeq12d 2789 . . . . . . 7 (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → ((𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))) ↔ (𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘((𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)‘(𝐻𝑥)))))
113106, 112syl5ibrcom 238 . . . . . 6 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑋𝐸) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥)))))
1141133expia 1141 . . . . 5 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝑋𝐸 → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
115114com23 86 . . . 4 ((𝑇 ∈ mFS ∧ 𝑓 ∈ ran (mRSubst‘𝑇)) → (𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
116115rexlimdva 3183 . . 3 (𝑇 ∈ mFS → (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
11710, 116syl5bi 233 . 2 (𝑇 ∈ mFS → (𝐹 ∈ ran 𝑆 → (𝑋𝐸 → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))))
1181173imp 1128 1 ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆𝑋𝐸) → (𝑉‘(𝐹𝑋)) = 𝑥 ∈ (𝑉𝑋)(𝑉‘(𝐹‘(𝐻𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1098   = wceq 1634  wcel 2148  wrex 3065  Vcvv 3355  cun 3727  cin 3728  cop 4332   ciun 4665  cmpt 4876   × cxp 5261  ran crn 5264  wf 6038  cfv 6042  1st c1st 7334  2nd c2nd 7335  Word cword 13509  ⟨“cs1 13512  mCNcmcn 31712  mVRcmvar 31713  mTypecmty 31714  mTCcmtc 31716  mRExcmrex 31718  mExcmex 31719  mVarscmvrs 31721  mRSubstcmrsub 31722  mSubstcmsub 31723  mVHcmvh 31724  mFScmfs 31728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-n0 11517  df-xnn0 11588  df-z 11602  df-uz 11911  df-fz 12556  df-fzo 12696  df-seq 13031  df-hash 13344  df-word 13517  df-lsw 13518  df-concat 13519  df-s1 13520  df-substr 13521  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-0g 16330  df-gsum 16331  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-submnd 17564  df-frmd 17614  df-mrex 31738  df-mex 31739  df-mvrs 31741  df-mrsub 31742  df-msub 31743  df-mvh 31744  df-mfs 31748
This theorem is referenced by:  mclsppslem  31835
  Copyright terms: Public domain W3C validator