Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 31785
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVR‘𝑇)
msubff1.r 𝑅 = (mREx‘𝑇)
msubff1.s 𝑆 = (mSubst‘𝑇)
msubff1.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubff1.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubff1.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubff1.e . . . 4 𝐸 = (mEx‘𝑇)
51, 2, 3, 4msubff 31759 . . 3 (𝑇 ∈ mFS → 𝑆:(𝑅pm 𝑉)⟶(𝐸𝑚 𝐸))
6 mapsspm 8042 . . . 4 (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS → (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉))
85, 7fssresd 6211 . 2 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝐸𝑚 𝐸))
9 eqid 2770 . . . . . . . . . . . . 13 (mRSubst‘𝑇) = (mRSubst‘𝑇)
101, 2, 9mrsubff 31741 . . . . . . . . . . . 12 (𝑇 ∈ mFS → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
1110ad2antrr 697 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
12 simplrl 754 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅𝑚 𝑉))
136, 12sseldi 3748 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅pm 𝑉))
1411, 13ffvelrnd 6503 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅𝑚 𝑅))
15 elmapi 8030 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅𝑚 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
16 ffn 6185 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
18 simplrr 755 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅𝑚 𝑉))
196, 18sseldi 3748 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅pm 𝑉))
2011, 19ffvelrnd 6503 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) ∈ (𝑅𝑚 𝑅))
21 elmapi 8030 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) ∈ (𝑅𝑚 𝑅) → ((mRSubst‘𝑇)‘𝑔):𝑅𝑅)
22 ffn 6185 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
24 simplrr 755 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (𝑆𝑓) = (𝑆𝑔))
2524fveq1d 6334 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))
2612adantr 466 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓 ∈ (𝑅𝑚 𝑉))
27 elmapi 8030 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅𝑚 𝑉) → 𝑓:𝑉𝑅)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓:𝑉𝑅)
29 ssid 3771 . . . . . . . . . . . . . 14 𝑉𝑉
3029a1i 11 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑉𝑉)
31 eqid 2770 . . . . . . . . . . . . . . . . . 18 (mTC‘𝑇) = (mTC‘𝑇)
32 eqid 2770 . . . . . . . . . . . . . . . . . 18 (mType‘𝑇) = (mType‘𝑇)
331, 31, 32mtyf2 31780 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
3433ad3antrrr 701 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
35 simplrl 754 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑣𝑉)
3634, 35ffvelrnd 6503 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇))
37 opelxpi 5288 . . . . . . . . . . . . . . 15 ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3836, 37sylancom 568 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3931, 4, 2mexval 31731 . . . . . . . . . . . . . 14 𝐸 = ((mTC‘𝑇) × 𝑅)
4038, 39syl6eleqr 2860 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸)
411, 2, 3, 4, 9msubval 31754 . . . . . . . . . . . . 13 ((𝑓:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4228, 30, 40, 41syl3anc 1475 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4318adantr 466 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔 ∈ (𝑅𝑚 𝑉))
44 elmapi 8030 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅𝑚 𝑉) → 𝑔:𝑉𝑅)
4543, 44syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔:𝑉𝑅)
461, 2, 3, 4, 9msubval 31754 . . . . . . . . . . . . 13 ((𝑔:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4745, 30, 40, 46syl3anc 1475 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4825, 42, 473eqtr3d 2812 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
49 fvex 6342 . . . . . . . . . . . . 13 (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∈ V
50 fvex 6342 . . . . . . . . . . . . 13 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) ∈ V
5149, 50opth 5072 . . . . . . . . . . . 12 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ ↔ ((1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))))
5251simprbi 478 . . . . . . . . . . 11 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
5348, 52syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
54 fvex 6342 . . . . . . . . . . . 12 ((mType‘𝑇)‘𝑣) ∈ V
55 vex 3352 . . . . . . . . . . . 12 𝑟 ∈ V
5654, 55op2nd 7323 . . . . . . . . . . 11 (2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = 𝑟
5756fveq2i 6335 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑓)‘𝑟)
5856fveq2i 6335 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘𝑟)
5953, 57, 583eqtr3g 2827 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘𝑟) = (((mRSubst‘𝑇)‘𝑔)‘𝑟))
6017, 23, 59eqfnfvd 6457 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔))
611, 2, 9mrsubff1 31743 . . . . . . . . . . 11 (𝑇 ∈ mFS → ((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅))
62 f1fveq 6661 . . . . . . . . . . 11 ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅) ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
6361, 62sylan 561 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
64 fvres 6348 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅𝑚 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = ((mRSubst‘𝑇)‘𝑓))
65 fvres 6348 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅𝑚 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) = ((mRSubst‘𝑇)‘𝑔))
6664, 65eqeqan12d 2786 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6766adantl 467 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6863, 67bitr3d 270 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6968adantr 466 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
7060, 69mpbird 247 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 = 𝑔)
7170fveq1d 6334 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓𝑣) = (𝑔𝑣))
7271expr 444 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
7372ralrimdva 3117 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
74 fvres 6348 . . . . . 6 (𝑓 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = (𝑆𝑓))
75 fvres 6348 . . . . . 6 (𝑔 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) = (𝑆𝑔))
7674, 75eqeqan12d 2786 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
7776adantl 467 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
78 ffn 6185 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
79 ffn 6185 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
80 eqfnfv 6454 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8178, 79, 80syl2an 575 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8227, 44, 81syl2an 575 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8382adantl 467 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8473, 77, 833imtr4d 283 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
8584ralrimivva 3119 . 2 (𝑇 ∈ mFS → ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
86 dff13 6654 . 2 ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸) ↔ ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝐸𝑚 𝐸) ∧ ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔)))
878, 85, 86sylanbrc 564 1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wral 3060  wss 3721  cop 4320   × cxp 5247  cres 5251   Fn wfn 6026  wf 6027  1-1wf1 6028  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  𝑚 cmap 8008  pm cpm 8009  mVRcmvar 31690  mTypecmty 31691  mTCcmtc 31693  mRExcmrex 31695  mExcmex 31696  mRSubstcmrsub 31699  mSubstcmsub 31700  mFScmfs 31705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-gsum 16310  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-frmd 17593  df-mrex 31715  df-mex 31716  df-mrsub 31719  df-msub 31720  df-mfs 31725
This theorem is referenced by:  msubff1o  31786
  Copyright terms: Public domain W3C validator