![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version |
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstaval | ⊢ 𝑆 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
2 | fveq2 6354 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | syl6eqr 2813 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | rneqd 5509 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
6 | df-msta 31721 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
7 | fvex 6364 | . . . . . 6 ⊢ (mStRed‘𝑇) ∈ V | |
8 | 3, 7 | eqeltri 2836 | . . . . 5 ⊢ 𝑅 ∈ V |
9 | 8 | rnex 7267 | . . . 4 ⊢ ran 𝑅 ∈ V |
10 | 5, 6, 9 | fvmpt 6446 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
11 | rn0 5533 | . . . . 5 ⊢ ran ∅ = ∅ | |
12 | 11 | eqcomi 2770 | . . . 4 ⊢ ∅ = ran ∅ |
13 | fvprc 6348 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
14 | fvprc 6348 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
15 | 3, 14 | syl5eq 2807 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
16 | 15 | rneqd 5509 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
17 | 12, 13, 16 | 3eqtr4a 2821 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
18 | 10, 17 | pm2.61i 176 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
19 | 1, 18 | eqtri 2783 | 1 ⊢ 𝑆 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 ran crn 5268 ‘cfv 6050 mStRedcmsr 31700 mStatcmsta 31701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-iota 6013 df-fun 6052 df-fv 6058 df-msta 31721 |
This theorem is referenced by: msrid 31771 msrfo 31772 mstapst 31773 elmsta 31774 |
Copyright terms: Public domain | W3C validator |