Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvrs Structured version   Visualization version   GIF version

Theorem mrsubvrs 31393
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
mrsubvrs.v 𝑉 = (mVR‘𝑇)
mrsubvrs.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubvrs ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem mrsubvrs
Dummy variables 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3912 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubco.s . . . . . . . . 9 𝑆 = (mRSubst‘𝑇)
3 fvprc 6172 . . . . . . . . 9 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
42, 3syl5eq 2666 . . . . . . . 8 𝑇 ∈ V → 𝑆 = ∅)
54rneqd 5342 . . . . . . 7 𝑇 ∈ V → ran 𝑆 = ran ∅)
6 rn0 5366 . . . . . . 7 ran ∅ = ∅
75, 6syl6eq 2670 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
81, 7nsyl2 142 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
9 eqid 2620 . . . . . 6 (mCN‘𝑇) = (mCN‘𝑇)
10 mrsubvrs.v . . . . . 6 𝑉 = (mVR‘𝑇)
11 mrsubvrs.r . . . . . 6 𝑅 = (mREx‘𝑇)
129, 10, 11mrexval 31372 . . . . 5 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12syl 17 . . . 4 (𝐹 ∈ ran 𝑆𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1413eleq2d 2685 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋𝑅𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉)))
15 fveq2 6178 . . . . . . . . 9 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
1615rneqd 5342 . . . . . . . 8 (𝑣 = ∅ → ran (𝐹𝑣) = ran (𝐹‘∅))
1716ineq1d 3805 . . . . . . 7 (𝑣 = ∅ → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘∅) ∩ 𝑉))
18 rneq 5340 . . . . . . . . . . . 12 (𝑣 = ∅ → ran 𝑣 = ran ∅)
1918, 6syl6eq 2670 . . . . . . . . . . 11 (𝑣 = ∅ → ran 𝑣 = ∅)
2019ineq1d 3805 . . . . . . . . . 10 (𝑣 = ∅ → (ran 𝑣𝑉) = (∅ ∩ 𝑉))
21 0in 3960 . . . . . . . . . 10 (∅ ∩ 𝑉) = ∅
2220, 21syl6eq 2670 . . . . . . . . 9 (𝑣 = ∅ → (ran 𝑣𝑉) = ∅)
2322iuneq1d 4536 . . . . . . . 8 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
24 0iun 4568 . . . . . . . 8 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅
2523, 24syl6eq 2670 . . . . . . 7 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅)
2617, 25eqeq12d 2635 . . . . . 6 (𝑣 = ∅ → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘∅) ∩ 𝑉) = ∅))
2726imbi2d 330 . . . . 5 (𝑣 = ∅ → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)))
28 fveq2 6178 . . . . . . . . 9 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
2928rneqd 5342 . . . . . . . 8 (𝑣 = 𝑦 → ran (𝐹𝑣) = ran (𝐹𝑦))
3029ineq1d 3805 . . . . . . 7 (𝑣 = 𝑦 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑦) ∩ 𝑉))
31 rneq 5340 . . . . . . . . 9 (𝑣 = 𝑦 → ran 𝑣 = ran 𝑦)
3231ineq1d 3805 . . . . . . . 8 (𝑣 = 𝑦 → (ran 𝑣𝑉) = (ran 𝑦𝑉))
3332iuneq1d 4536 . . . . . . 7 (𝑣 = 𝑦 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3430, 33eqeq12d 2635 . . . . . 6 (𝑣 = 𝑦 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
3534imbi2d 330 . . . . 5 (𝑣 = 𝑦 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
36 fveq2 6178 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (𝐹𝑣) = (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3736rneqd 5342 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran (𝐹𝑣) = ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3837ineq1d 3805 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉))
39 rneq 5340 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran 𝑣 = ran (𝑦 ++ ⟨“𝑧”⟩))
4039ineq1d 3805 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran 𝑣𝑉) = (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉))
4140iuneq1d 4536 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
4238, 41eqeq12d 2635 . . . . . 6 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4342imbi2d 330 . . . . 5 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
44 fveq2 6178 . . . . . . . . 9 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
4544rneqd 5342 . . . . . . . 8 (𝑣 = 𝑋 → ran (𝐹𝑣) = ran (𝐹𝑋))
4645ineq1d 3805 . . . . . . 7 (𝑣 = 𝑋 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑋) ∩ 𝑉))
47 rneq 5340 . . . . . . . . 9 (𝑣 = 𝑋 → ran 𝑣 = ran 𝑋)
4847ineq1d 3805 . . . . . . . 8 (𝑣 = 𝑋 → (ran 𝑣𝑉) = (ran 𝑋𝑉))
4948iuneq1d 4536 . . . . . . 7 (𝑣 = 𝑋 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
5046, 49eqeq12d 2635 . . . . . 6 (𝑣 = 𝑋 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
5150imbi2d 330 . . . . 5 (𝑣 = 𝑋 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
522mrsub0 31387 . . . . . . . . 9 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
5352rneqd 5342 . . . . . . . 8 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ran ∅)
5453, 6syl6eq 2670 . . . . . . 7 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ∅)
5554ineq1d 3805 . . . . . 6 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = (∅ ∩ 𝑉))
5655, 21syl6eq 2670 . . . . 5 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)
57 uneq1 3752 . . . . . . . 8 ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
58 simpl 473 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹 ∈ ran 𝑆)
59 simprl 793 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6013adantr 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
6159, 60eleqtrrd 2702 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦𝑅)
62 simprr 795 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))
6362s1cld 13366 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6463, 60eleqtrrd 2702 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ 𝑅)
652, 11mrsubccat 31389 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆𝑦𝑅 ∧ ⟨“𝑧”⟩ ∈ 𝑅) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6658, 61, 64, 65syl3anc 1324 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6766rneqd 5342 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
682, 11mrsubf 31388 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
6968adantr 481 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹:𝑅𝑅)
7069, 61ffvelrnd 6346 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ 𝑅)
7170, 60eleqtrd 2701 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
7269, 64ffvelrnd 6346 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ 𝑅)
7372, 60eleqtrd 2701 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
74 ccatrn 13355 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7571, 73, 74syl2anc 692 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7667, 75eqtrd 2654 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7776ineq1d 3805 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉))
78 indir 3867 . . . . . . . . . 10 ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
7977, 78syl6eq 2670 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
80 ccatrn 13355 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
8159, 63, 80syl2anc 692 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
82 s1rn 13362 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
8382ad2antll 764 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ⟨“𝑧”⟩ = {𝑧})
8483uneq2d 3759 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran 𝑦 ∪ ran ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8581, 84eqtrd 2654 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8685ineq1d 3805 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉))
87 indir 3867 . . . . . . . . . . . . 13 ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))
8886, 87syl6eq 2670 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉)))
8988iuneq1d 4536 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
90 iunxun 4596 . . . . . . . . . . 11 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
9189, 90syl6eq 2670 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
92 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑧𝑉)
9392snssd 4331 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → {𝑧} ⊆ 𝑉)
94 df-ss 3581 . . . . . . . . . . . . . . 15 ({𝑧} ⊆ 𝑉 ↔ ({𝑧} ∩ 𝑉) = {𝑧})
9593, 94sylib 208 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = {𝑧})
9695iuneq1d 4536 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
97 vex 3198 . . . . . . . . . . . . . 14 𝑧 ∈ V
98 s1eq 13363 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ⟨“𝑥”⟩ = ⟨“𝑧”⟩)
9998fveq2d 6182 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹‘⟨“𝑥”⟩) = (𝐹‘⟨“𝑧”⟩))
10099rneqd 5342 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ran (𝐹‘⟨“𝑥”⟩) = ran (𝐹‘⟨“𝑧”⟩))
101100ineq1d 3805 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
10297, 101iunxsn 4594 . . . . . . . . . . . . 13 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)
10396, 102syl6eq 2670 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
104 incom 3797 . . . . . . . . . . . . . . 15 ({𝑧} ∩ 𝑉) = (𝑉 ∩ {𝑧})
105 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ¬ 𝑧𝑉)
106 disjsn 4237 . . . . . . . . . . . . . . . 16 ((𝑉 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑉)
107105, 106sylibr 224 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝑉 ∩ {𝑧}) = ∅)
108104, 107syl5eq 2666 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = ∅)
109108iuneq1d 4536 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
11058adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝐹 ∈ ran 𝑆)
111 eldif 3577 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) ↔ (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉))
112111biimpri 218 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
11362, 112sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
114 difun2 4039 . . . . . . . . . . . . . . . . . . 19 (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) = ((mCN‘𝑇) ∖ 𝑉)
115113, 114syl6eleq 2709 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉))
1162, 11, 10, 9mrsubcn 31390 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ran 𝑆𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉)) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
117110, 115, 116syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
118117rneqd 5342 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = ran ⟨“𝑧”⟩)
11983adantr 481 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
120118, 119eqtrd 2654 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = {𝑧})
121120ineq1d 3805 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ({𝑧} ∩ 𝑉))
122121, 108eqtrd 2654 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ∅)
12324, 109, 1223eqtr4a 2680 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
124103, 123pm2.61dan 831 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
125124uneq2d 3759 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12691, 125eqtrd 2654 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12779, 126eqeq12d 2635 . . . . . . . 8 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))))
12857, 127syl5ibr 236 . . . . . . 7 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
129128expcom 451 . . . . . 6 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → (𝐹 ∈ ran 𝑆 → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
130129a2d 29 . . . . 5 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) → (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
13127, 35, 43, 51, 56, 130wrdind 13458 . . . 4 (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
132131com12 32 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
13314, 132sylbid 230 . 2 (𝐹 ∈ ran 𝑆 → (𝑋𝑅 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
134133imp 445 1 ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907  {csn 4168   ciun 4511  ran crn 5105  wf 5872  cfv 5876  (class class class)co 6635  Word cword 13274   ++ cconcat 13276  ⟨“cs1 13277  mCNcmcn 31331  mVRcmvar 31332  mRExcmrex 31337  mRSubstcmrsub 31341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-word 13282  df-lsw 13283  df-concat 13284  df-s1 13285  df-substr 13286  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-gsum 16084  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-frmd 17367  df-mrex 31357  df-mrsub 31361
This theorem is referenced by:  msubvrs  31431
  Copyright terms: Public domain W3C validator