Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsub0 Structured version   Visualization version   GIF version

Theorem mrsub0 31387
Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsub0 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)

Proof of Theorem mrsub0
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3912 . . 3 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . . . 6 𝑆 = (mRSubst‘𝑇)
3 fvprc 6172 . . . . . 6 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
42, 3syl5eq 2666 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
54rneqd 5342 . . . 4 𝑇 ∈ V → ran 𝑆 = ran ∅)
6 rn0 5366 . . . 4 ran ∅ = ∅
75, 6syl6eq 2670 . . 3 𝑇 ∈ V → ran 𝑆 = ∅)
81, 7nsyl2 142 . 2 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
9 eqid 2620 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
10 eqid 2620 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
119, 10, 2mrsubff 31383 . . . 4 (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)))
12 ffun 6035 . . . 4 (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑𝑚 (mREx‘𝑇)) → Fun 𝑆)
138, 11, 123syl 18 . . 3 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
149, 10, 2mrsubrn 31384 . . . . 5 ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇)))
1514eleq2i 2691 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))))
1615biimpi 206 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))))
17 fvelima 6235 . . 3 ((Fun 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹)
1813, 16, 17syl2anc 692 . 2 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹)
19 elmapi 7864 . . . . . . 7 (𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
2019adantl 482 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
21 ssid 3616 . . . . . . 7 (mVR‘𝑇) ⊆ (mVR‘𝑇)
2221a1i 11 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
23 wrd0 13313 . . . . . . 7 ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
24 eqid 2620 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
2524, 9, 10mrexval 31372 . . . . . . . 8 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2625adantr 481 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2723, 26syl5eleqr 2706 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇))
28 eqid 2620 . . . . . . 7 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
2924, 9, 10, 2, 28mrsubval 31380 . . . . . 6 ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
3020, 22, 27, 29syl3anc 1324 . . . . 5 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
31 co02 5637 . . . . . . 7 ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅) = ∅
3231oveq2i 6646 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅)
3328frmd0 17378 . . . . . . 7 ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
3433gsum0 17259 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅
3532, 34eqtri 2642 . . . . 5 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ∅
3630, 35syl6eq 2670 . . . 4 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ∅)
37 fveq1 6177 . . . . 5 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘∅) = (𝐹‘∅))
3837eqeq1d 2622 . . . 4 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅))
3936, 38syl5ibcom 235 . . 3 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))) → ((𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
4039rexlimdva 3027 . 2 (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑𝑚 (mVR‘𝑇))(𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
418, 18, 40sylc 65 1 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988  wrex 2910  Vcvv 3195  cun 3565  wss 3567  c0 3907  ifcif 4077  cmpt 4720  ran crn 5105  cima 5107  ccom 5108  Fun wfun 5870  wf 5872  cfv 5876  (class class class)co 6635  𝑚 cmap 7842  pm cpm 7843  Word cword 13274  ⟨“cs1 13277   Σg cgsu 16082  freeMndcfrmd 17365  mCNcmcn 31331  mVRcmvar 31332  mRExcmrex 31337  mRSubstcmrsub 31341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-word 13282  df-concat 13284  df-s1 13285  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-gsum 16084  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-frmd 17367  df-mrex 31357  df-mrsub 31361
This theorem is referenced by:  mrsubvrs  31393
  Copyright terms: Public domain W3C validator