![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version |
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrid.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrid.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrid.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrid.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mrissmrid.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
mrissmrid | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrid.2 | . 2 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrissmrid.3 | . 2 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrissmrid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrissmrid.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | mrissmrid.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 2, 3, 5 | mrissd 16519 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 4, 6 | sstrd 3755 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
8 | 1, 2, 3, 6 | ismri2d 16516 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 5, 8 | mpbid 222 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
10 | 4 | sseld 3744 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆)) |
11 | 4 | ssdifd 3890 | . . . . . . 7 ⊢ (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
12 | 6 | ssdifssd 3892 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
13 | 3, 1, 11, 12 | mrcssd 16507 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥}))) |
14 | 13 | ssneld 3747 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
15 | 10, 14 | imim12d 81 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))) |
16 | 15 | ralimdv2 3100 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
17 | 9, 16 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))) |
18 | 1, 2, 3, 7, 17 | ismri2dd 16517 | 1 ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ∖ cdif 3713 ⊆ wss 3716 {csn 4322 ‘cfv 6050 Moorecmre 16465 mrClscmrc 16466 mrIndcmri 16467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-int 4629 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-mre 16469 df-mrc 16470 df-mri 16471 |
This theorem is referenced by: mreexexlem2d 16528 acsfiindd 17399 |
Copyright terms: Public domain | W3C validator |