![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreriincl | Structured version Visualization version GIF version |
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mreriincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 4746 | . . . 4 ⊢ (𝐼 = ∅ → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) | |
2 | 1 | adantl 473 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) |
3 | mre1cl 16456 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 764 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
6 | mress 16455 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
7 | 6 | ex 449 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
8 | 7 | ralimdv 3101 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋)) |
9 | 8 | imp 444 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋) |
10 | riinn0 4747 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) | |
11 | 9, 10 | sylan 489 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) |
12 | simpll 807 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
13 | simpr 479 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅) | |
14 | simplr 809 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
15 | mreiincl 16458 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
16 | 12, 13, 14, 15 | syl3anc 1477 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |
17 | 11, 16 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
18 | 5, 17 | pm2.61dane 3019 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 ∩ ciin 4673 ‘cfv 6049 Moorecmre 16444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-mre 16448 |
This theorem is referenced by: acsfn1 16523 acsfn1c 16524 acsfn2 16525 acsfn1p 38271 |
Copyright terms: Public domain | W3C validator |