![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreintcl | Structured version Visualization version GIF version |
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mreintcl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 4976 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶)) | |
2 | 1 | biimpar 503 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ∈ 𝒫 𝐶) |
3 | 2 | 3adant3 1127 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ∈ 𝒫 𝐶) |
4 | ismre 16452 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
5 | 4 | simp3bi 1142 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
6 | 5 | 3ad2ant1 1128 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
7 | simp3 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
8 | neeq1 2994 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅)) | |
9 | inteq 4630 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆) | |
10 | 9 | eleq1d 2824 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶)) |
11 | 8, 10 | imbi12d 333 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ↔ (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶))) |
12 | 11 | rspcva 3447 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) → (𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶)) |
13 | 12 | 3impia 1110 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
14 | 3, 6, 7, 13 | syl3anc 1477 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 ∩ cint 4627 ‘cfv 6049 Moorecmre 16444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-mre 16448 |
This theorem is referenced by: mreiincl 16458 mrerintcl 16459 mreincl 16461 mremre 16466 submre 16467 mrcflem 16468 mrelatglb 17385 mreclatBAD 17388 |
Copyright terms: Public domain | W3C validator |