![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreclatdemoBAD | Structured version Visualization version GIF version |
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 17408. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6775 update): This proof uses the old df-clat 17329 and references the required instance of mreclatBAD 17408 as a hypothesis. When mreclatBAD 17408 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
Ref | Expression |
---|---|
mreclatBAD. | ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Ref | Expression |
---|---|
mreclatdemoBAD | ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6363 | . . . . 5 ⊢ (TopOpen‘𝑊) ∈ V | |
2 | 1 | uniex 7119 | . . . 4 ⊢ ∪ (TopOpen‘𝑊) ∈ V |
3 | mremre 16486 | . . . 4 ⊢ (∪ (TopOpen‘𝑊) ∈ V → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) |
5 | inss2 3977 | . . . . . 6 ⊢ (TopSp ∩ LMod) ⊆ LMod | |
6 | 5 | sseli 3740 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod) |
7 | eqid 2760 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2760 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
9 | 7, 8 | lssmre 19188 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
11 | inss1 3976 | . . . . . 6 ⊢ (TopSp ∩ LMod) ⊆ TopSp | |
12 | 11 | sseli 3740 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp) |
13 | eqid 2760 | . . . . . . 7 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
14 | 7, 13 | tpsuni 20962 | . . . . . 6 ⊢ (𝑊 ∈ TopSp → (Base‘𝑊) = ∪ (TopOpen‘𝑊)) |
15 | 14 | fveq2d 6357 | . . . . 5 ⊢ (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
16 | 12, 15 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
17 | 10, 16 | eleqtrd 2841 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
18 | 13 | tpstop 20963 | . . . 4 ⊢ (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top) |
19 | eqid 2760 | . . . . 5 ⊢ ∪ (TopOpen‘𝑊) = ∪ (TopOpen‘𝑊) | |
20 | 19 | cldmre 21104 | . . . 4 ⊢ ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
21 | 12, 18, 20 | 3syl 18 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
22 | mreincl 16481 | . . 3 ⊢ (((Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) | |
23 | 4, 17, 21, 22 | syl3anc 1477 | . 2 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
24 | mreclatBAD. | . 2 ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | |
25 | 23, 24 | syl 17 | 1 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 𝒫 cpw 4302 ∪ cuni 4588 ‘cfv 6049 Basecbs 16079 TopOpenctopn 16304 Moorecmre 16464 CLatccla 17328 toInccipo 17372 LModclmod 19085 LSubSpclss 19154 Topctop 20920 TopSpctps 20958 Clsdccld 21042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mre 16468 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-top 20921 df-topon 20938 df-topsp 20959 df-cld 21045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |