Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatBAD Structured version   Visualization version   GIF version

 Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6757 update): Reprove using isclat 17317 instead of the isclatBAD. hypothesis. See commented-out mreclat above.
Hypotheses
Ref Expression
mreclat.i 𝐼 = (toInc‘𝐶)
isclatBAD. (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))))
Assertion
Ref Expression
mreclatBAD (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐶   𝑥,𝑋

StepHypRef Expression
1 mreclat.i . . . 4 𝐼 = (toInc‘𝐶)
21ipopos 17368 . . 3 𝐼 ∈ Poset
32a1i 11 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset)
4 eqid 2771 . . . . . . . 8 (mrCls‘𝐶) = (mrCls‘𝐶)
5 eqid 2771 . . . . . . . 8 (lub‘𝐼) = (lub‘𝐼)
61, 4, 5mrelatlub 17394 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((lub‘𝐼)‘𝑥) = ((mrCls‘𝐶)‘ 𝑥))
7 uniss 4596 . . . . . . . . . 10 (𝑥𝐶 𝑥 𝐶)
87adantl 467 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥 𝐶)
9 mreuni 16468 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
109adantr 466 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝐶 = 𝑋)
118, 10sseqtrd 3790 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥𝑋)
124mrccl 16479 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝑋) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
1311, 12syldan 579 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
146, 13eqeltrd 2850 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((lub‘𝐼)‘𝑥) ∈ 𝐶)
15 fveq2 6333 . . . . . . . . . 10 (𝑥 = ∅ → ((glb‘𝐼)‘𝑥) = ((glb‘𝐼)‘∅))
1615adantl 467 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → ((glb‘𝐼)‘𝑥) = ((glb‘𝐼)‘∅))
17 eqid 2771 . . . . . . . . . . 11 (glb‘𝐼) = (glb‘𝐼)
181, 17mrelatglb0 17393 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → ((glb‘𝐼)‘∅) = 𝑋)
1918ad2antrr 705 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → ((glb‘𝐼)‘∅) = 𝑋)
2016, 19eqtrd 2805 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → ((glb‘𝐼)‘𝑥) = 𝑋)
21 mre1cl 16462 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
2221ad2antrr 705 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → 𝑋𝐶)
2320, 22eqeltrd 2850 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → ((glb‘𝐼)‘𝑥) ∈ 𝐶)
241, 17mrelatglb 17392 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → ((glb‘𝐼)‘𝑥) = 𝑥)
25 mreintcl 16463 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
2624, 25eqeltrd 2850 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → ((glb‘𝐼)‘𝑥) ∈ 𝐶)
27263expa 1111 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 ≠ ∅) → ((glb‘𝐼)‘𝑥) ∈ 𝐶)
2823, 27pm2.61dane 3030 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((glb‘𝐼)‘𝑥) ∈ 𝐶)
2914, 28jca 501 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (((lub‘𝐼)‘𝑥) ∈ 𝐶 ∧ ((glb‘𝐼)‘𝑥) ∈ 𝐶))
3029ex 397 . . . 4 (𝐶 ∈ (Moore‘𝑋) → (𝑥𝐶 → (((lub‘𝐼)‘𝑥) ∈ 𝐶 ∧ ((glb‘𝐼)‘𝑥) ∈ 𝐶)))
311ipobas 17363 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
32 sseq2 3776 . . . . . 6 (𝐶 = (Base‘𝐼) → (𝑥𝐶𝑥 ⊆ (Base‘𝐼)))
33 eleq2 2839 . . . . . . 7 (𝐶 = (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ 𝐶 ↔ ((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼)))
34 eleq2 2839 . . . . . . 7 (𝐶 = (Base‘𝐼) → (((glb‘𝐼)‘𝑥) ∈ 𝐶 ↔ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))
3533, 34anbi12d 616 . . . . . 6 (𝐶 = (Base‘𝐼) → ((((lub‘𝐼)‘𝑥) ∈ 𝐶 ∧ ((glb‘𝐼)‘𝑥) ∈ 𝐶) ↔ (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))
3632, 35imbi12d 333 . . . . 5 (𝐶 = (Base‘𝐼) → ((𝑥𝐶 → (((lub‘𝐼)‘𝑥) ∈ 𝐶 ∧ ((glb‘𝐼)‘𝑥) ∈ 𝐶)) ↔ (𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))))
3731, 36syl 17 . . . 4 (𝐶 ∈ (Moore‘𝑋) → ((𝑥𝐶 → (((lub‘𝐼)‘𝑥) ∈ 𝐶 ∧ ((glb‘𝐼)‘𝑥) ∈ 𝐶)) ↔ (𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))))
3830, 37mpbid 222 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))
3938alrimiv 2007 . 2 (𝐶 ∈ (Moore‘𝑋) → ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))
40 isclatBAD. . 2 (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼)))))
413, 39, 40sylanbrc 572 1 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071  ∀wal 1629   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ⊆ wss 3723  ∅c0 4063  ∪ cuni 4575  ∩ cint 4612  ‘cfv 6030  Basecbs 16064  Moorecmre 16450  mrClscmrc 16451  Posetcpo 17148  lubclub 17150  glbcglb 17151  CLatccla 17315  toInccipo 17359 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-tset 16168  df-ple 16169  df-ocomp 16171  df-mre 16454  df-mrc 16455  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-odu 17337  df-ipo 17360 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator