![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcval | Structured version Visualization version GIF version |
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcval | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcfval 16490 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
3 | 2 | adantr 472 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠})) |
4 | sseq1 3767 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠)) | |
5 | 4 | rabbidv 3329 | . . . 4 ⊢ (𝑥 = 𝑈 → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
6 | 5 | inteqd 4632 | . . 3 ⊢ (𝑥 = 𝑈 → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
7 | 6 | adantl 473 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) ∧ 𝑥 = 𝑈) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
8 | mre1cl 16476 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
9 | elpw2g 4976 | . . . 4 ⊢ (𝑋 ∈ 𝐶 → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋)) |
11 | 10 | biimpar 503 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ∈ 𝒫 𝑋) |
12 | 8 | adantr 472 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ 𝐶) |
13 | simpr 479 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ 𝑋) | |
14 | sseq2 3768 | . . . . . 6 ⊢ (𝑠 = 𝑋 → (𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋)) | |
15 | 14 | elrab 3504 | . . . . 5 ⊢ (𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ↔ (𝑋 ∈ 𝐶 ∧ 𝑈 ⊆ 𝑋)) |
16 | 12, 13, 15 | sylanbrc 701 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
17 | ne0i 4064 | . . . 4 ⊢ (𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅) |
19 | intex 4969 | . . 3 ⊢ ({𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) | |
20 | 18, 19 | sylib 208 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠} ∈ V) |
21 | 3, 7, 11, 20 | fvmptd 6451 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) = ∩ {𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {crab 3054 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 ∩ cint 4627 ↦ cmpt 4881 ‘cfv 6049 Moorecmre 16464 mrClscmrc 16465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-mre 16468 df-mrc 16469 |
This theorem is referenced by: mrcid 16495 mrcss 16498 mrcssid 16499 cycsubg2 17852 aspval2 19569 |
Copyright terms: Public domain | W3C validator |