![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssv | Structured version Visualization version GIF version |
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcssv | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6379 | . 2 ⊢ (𝐹‘𝑈) ⊆ ∪ ran 𝐹 | |
2 | mrcfval.f | . . . . 5 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | mrcf 16491 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
4 | frn 6214 | . . . 4 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
5 | uniss 4610 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐶 → ∪ ran 𝐹 ⊆ ∪ 𝐶) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ ran 𝐹 ⊆ ∪ 𝐶) |
7 | mreuni 16482 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
8 | 6, 7 | sseqtrd 3782 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ ran 𝐹 ⊆ 𝑋) |
9 | 1, 8 | syl5ss 3755 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 ran crn 5267 ⟶wf 6045 ‘cfv 6049 Moorecmre 16464 mrClscmrc 16465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-mre 16468 df-mrc 16469 |
This theorem is referenced by: mrcidb 16497 mrcuni 16503 mrcssvd 16505 mrefg2 37790 proot1hash 38298 |
Copyright terms: Public domain | W3C validator |