MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssid Structured version   Visualization version   GIF version

Theorem mrcssid 16324
Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcssid ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝐹𝑈))

Proof of Theorem mrcssid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4527 . 2 𝑈 {𝑠𝐶𝑈𝑠}
2 mrcfval.f . . 3 𝐹 = (mrCls‘𝐶)
32mrcval 16317 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
41, 3syl5sseqr 3687 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  wss 3607   cint 4507  cfv 5926  Moorecmre 16289  mrClscmrc 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-mre 16293  df-mrc 16294
This theorem is referenced by:  mrcidb2  16325  mrcuni  16328  mrcssidd  16332  mrelatlub  17233  gsumwspan  17430  symggen  17936  mrccss  20086  ismrcd2  37579  ismrc  37581  mrefg2  37587
  Copyright terms: Public domain W3C validator