![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version |
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcidb | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcid 16481 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
3 | simpr 471 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) = 𝑈) | |
4 | 1 | mrcssv 16482 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
5 | 4 | adantr 466 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ⊆ 𝑋) |
6 | 3, 5 | eqsstr3d 3789 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ⊆ 𝑋) |
7 | 1 | mrccl 16479 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
8 | 6, 7 | syldan 579 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ∈ 𝐶) |
9 | 3, 8 | eqeltrrd 2851 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ∈ 𝐶) |
10 | 2, 9 | impbida 802 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ‘cfv 6030 Moorecmre 16450 mrClscmrc 16451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-int 4613 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-mre 16454 df-mrc 16455 |
This theorem is referenced by: mrcidb2 16486 |
Copyright terms: Public domain | W3C validator |