Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   GIF version

Theorem mrcfval 16315
 Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcfval (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Distinct variable groups:   𝑥,𝐹,𝑠   𝑥,𝐶,𝑠   𝑥,𝑋,𝑠

Proof of Theorem mrcfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2 𝐹 = (mrCls‘𝐶)
2 fvssunirn 6255 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3632 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ran Moore)
4 unieq 4476 . . . . . . 7 (𝑐 = 𝐶 𝑐 = 𝐶)
54pweqd 4196 . . . . . 6 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
6 rabeq 3223 . . . . . . 7 (𝑐 = 𝐶 → {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
76inteqd 4512 . . . . . 6 (𝑐 = 𝐶 {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
85, 7mpteq12dv 4766 . . . . 5 (𝑐 = 𝐶 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
9 df-mrc 16294 . . . . 5 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
10 mreunirn 16308 . . . . . . . 8 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
11 mrcflem 16313 . . . . . . . 8 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
1210, 11sylbi 207 . . . . . . 7 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
13 fssxp 6098 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
1412, 13syl 17 . . . . . 6 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
15 vuniex 6996 . . . . . . . 8 𝑐 ∈ V
1615pwex 4878 . . . . . . 7 𝒫 𝑐 ∈ V
17 vex 3234 . . . . . . 7 𝑐 ∈ V
1816, 17xpex 7004 . . . . . 6 (𝒫 𝑐 × 𝑐) ∈ V
19 ssexg 4837 . . . . . 6 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
2014, 18, 19sylancl 695 . . . . 5 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
218, 9, 20fvmpt3 6325 . . . 4 (𝐶 ran Moore → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
223, 21syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
23 mreuni 16307 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
2423pweqd 4196 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝒫 𝐶 = 𝒫 𝑋)
2524mpteq1d 4771 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
2622, 25eqtrd 2685 . 2 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
271, 26syl5eq 2697 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  {crab 2945  Vcvv 3231   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468  ∩ cint 4507   ↦ cmpt 4762   × cxp 5141  ran crn 5144  ⟶wf 5922  ‘cfv 5926  Moorecmre 16289  mrClscmrc 16290 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-mre 16293  df-mrc 16294 This theorem is referenced by:  mrcf  16316  mrcval  16317  acsficl2d  17223  mrclsp  19037  mrccls  20931
 Copyright terms: Public domain W3C validator