![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrccss | Structured version Visualization version GIF version |
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
mrccss.v | ⊢ 𝑉 = (Base‘𝑊) |
mrccss.o | ⊢ ⊥ = (ocv‘𝑊) |
mrccss.c | ⊢ 𝐶 = (CSubSp‘𝑊) |
mrccss.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrccss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrccss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | mrccss.c | . . . . 5 ⊢ 𝐶 = (CSubSp‘𝑊) | |
3 | 1, 2 | cssmre 20085 | . . . 4 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝐶 ∈ (Moore‘𝑉)) |
5 | mrccss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 5 | ocvocv 20063 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
7 | 1, 5 | ocvss 20062 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
9 | 1, 2, 5 | ocvcss 20079 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
10 | 8, 9 | sylan2 490 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) |
11 | mrccss.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
12 | 11 | mrcsscl 16327 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ 𝐶) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
13 | 4, 6, 10, 12 | syl3anc 1366 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
14 | 11 | mrcssid 16324 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
15 | 3, 14 | sylan 487 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐹‘𝑆)) |
16 | 5 | ocv2ss 20065 | . . . 4 ⊢ (𝑆 ⊆ (𝐹‘𝑆) → ( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆)) |
17 | 5 | ocv2ss 20065 | . . . 4 ⊢ (( ⊥ ‘(𝐹‘𝑆)) ⊆ ( ⊥ ‘𝑆) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
18 | 15, 16, 17 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
19 | 11 | mrccl 16318 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑉) ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
20 | 3, 19 | sylan 487 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) ∈ 𝐶) |
21 | 5, 2 | cssi 20076 | . . . 4 ⊢ ((𝐹‘𝑆) ∈ 𝐶 → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘(𝐹‘𝑆)))) |
23 | 18, 22 | sseqtr4d 3675 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ (𝐹‘𝑆)) |
24 | 13, 23 | eqssd 3653 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝐹‘𝑆) = ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ‘cfv 5926 Basecbs 15904 Moorecmre 16289 mrClscmrc 16290 PreHilcphl 20017 ocvcocv 20052 CSubSpccss 20053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-0g 16149 df-mre 16293 df-mrc 16294 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-rnghom 18763 df-staf 18893 df-srng 18894 df-lmod 18913 df-lmhm 19070 df-lvec 19151 df-sra 19220 df-rgmod 19221 df-phl 20019 df-ocv 20055 df-css 20056 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |