MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrccl Structured version   Visualization version   GIF version

Theorem mrccl 16478
Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrccl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)

Proof of Theorem mrccl
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcf 16476 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
32adantr 466 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹:𝒫 𝑋𝐶)
4 mre1cl 16461 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
5 elpw2g 4955 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
64, 5syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
76biimpar 463 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
83, 7ffvelrnd 6503 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wss 3721  𝒫 cpw 4295  wf 6027  cfv 6031  Moorecmre 16449  mrClscmrc 16450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-int 4610  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-mre 16453  df-mrc 16454
This theorem is referenced by:  mrcsncl  16479  mrcidb  16482  mrcidm  16486  submrc  16495  isacs2  16520  mrelatlub  17393  mreclatBAD  17394  gsumwspan  17590  cycsubg2cl  17839  symggen  18096  odf1o1  18193  cntzspan  18453  gsumzsplit  18533  gsumzoppg  18550  gsumpt  18567  dmdprdd  18605  dprdfeq0  18628  dprdspan  18633  dprdres  18634  dprdz  18636  subgdmdprd  18640  subgdprd  18641  dprd2dlem1  18647  dprd2da  18648  dmdprdsplit2lem  18651  mrccss  20254  ismrcd2  37781  proot1mul  38296
  Copyright terms: Public domain W3C validator