Step | Hyp | Ref
| Expression |
1 | | simpl 474 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
2 | | eqvisset 3351 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) |
3 | 2 | adantl 473 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ∈ V) |
4 | 1, 3 | jca 555 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
5 | | rabid 3254 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
6 | 4, 5 | sylibr 224 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | | mptssid.2 |
. . . . . . . 8
⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
8 | 6, 7 | syl6eleqr 2850 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
9 | | simpr 479 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
10 | 8, 9 | jca 555 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
11 | | mptssid.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐴 |
12 | 11 | ssrab2f 39817 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
13 | 7, 12 | eqsstri 3776 |
. . . . . . . . 9
⊢ 𝐶 ⊆ 𝐴 |
14 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
15 | 13, 14 | sseldi 3742 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
16 | 15 | adantr 472 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
17 | | simpr 479 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
18 | 16, 17 | jca 555 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
19 | 10, 18 | impbii 199 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
20 | 19 | ax-gen 1871 |
. . . 4
⊢
∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
21 | 20 | ax-gen 1871 |
. . 3
⊢
∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)) |
22 | | eqopab2b 5155 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
23 | 21, 22 | mpbir 221 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} |
24 | | df-mpt 4882 |
. 2
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
25 | | df-mpt 4882 |
. 2
⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵)} |
26 | 23, 24, 25 | 3eqtr4i 2792 |
1
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |