![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version |
Description: The restricted identity expressed with the "maps to" notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4883 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | opabresid 5614 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) | |
3 | 1, 2 | eqtri 2783 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2140 {copab 4865 ↦ cmpt 4882 I cid 5174 ↾ cres 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-res 5279 |
This theorem is referenced by: idref 6664 2fvcoidd 6717 pwfseqlem5 9698 restid2 16314 curf2ndf 17109 hofcl 17121 yonedainv 17143 sylow1lem2 18235 sylow3lem1 18263 0frgp 18413 frgpcyg 20145 evpmodpmf1o 20165 txswaphmeolem 21830 idnghm 22769 dvexp 23936 dvmptid 23940 mvth 23975 plyid 24185 coeidp 24239 dgrid 24240 plyremlem 24279 taylply2 24342 wilthlem2 25016 ftalem7 25026 fusgrfis 26443 fzto1st1 30183 zrhre 30394 qqhre 30395 fsovcnvlem 38828 fourierdlem60 40905 fourierdlem61 40906 |
Copyright terms: Public domain | W3C validator |