Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsupp Structured version   Visualization version   GIF version

Theorem mptnn0fsupp 13003
 Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsupp.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Assertion
Ref Expression
mptnn0fsupp (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsupp
StepHypRef Expression
1 mptnn0fsupp.c . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
21ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
3 eqid 2770 . . . . . 6 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
43fnmpt 6160 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
52, 4syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
6 nn0ex 11499 . . . . 5 0 ∈ V
76a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
8 mptnn0fsupp.0 . . . . 5 (𝜑0𝑉)
9 elex 3361 . . . . 5 ( 0𝑉0 ∈ V)
108, 9syl 17 . . . 4 (𝜑0 ∈ V)
11 suppvalfn 7452 . . . 4 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
125, 7, 10, 11syl3anc 1475 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
13 mptnn0fsupp.s . . . . 5 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
14 nne 2946 . . . . . . . . 9 (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
15 simpr 471 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
162ad2antrr 697 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
17 rspcsbela 4148 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1815, 16, 17syl2anc 565 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
193fvmpts 6427 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2015, 18, 19syl2anc 565 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2120eqeq1d 2772 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0𝑥 / 𝑘𝐶 = 0 ))
2214, 21syl5bb 272 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶 = 0 ))
2322imbi2d 329 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2423ralbidva 3133 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2524rexbidva 3196 . . . . 5 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2613, 25mpbird 247 . . . 4 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
27 rabssnn0fi 12992 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
2826, 27sylibr 224 . . 3 (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin)
2912, 28eqeltrd 2849 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin)
30 funmpt 6069 . . . 4 Fun (𝑘 ∈ ℕ0𝐶)
3130a1i 11 . . 3 (𝜑 → Fun (𝑘 ∈ ℕ0𝐶))
326mptex 6629 . . . 4 (𝑘 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) ∈ V)
34 funisfsupp 8435 . . 3 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ (𝑘 ∈ ℕ0𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3531, 33, 10, 34syl3anc 1475 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3629, 35mpbird 247 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ∃wrex 3061  {crab 3064  Vcvv 3349  ⦋csb 3680   class class class wbr 4784   ↦ cmpt 4861  Fun wfun 6025   Fn wfn 6026  ‘cfv 6031  (class class class)co 6792   supp csupp 7445  Fincfn 8108   finSupp cfsupp 8430   < clt 10275  ℕ0cn0 11493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533 This theorem is referenced by:  mptnn0fsuppd  13004  mptcoe1fsupp  19799  mptcoe1matfsupp  20826  pm2mp  20849  chfacffsupp  20880  chfacfscmulfsupp  20883  chfacfpmmulfsupp  20887  cayhamlem4  20912  ply1mulgsumlem3  42694  ply1mulgsumlem4  42695
 Copyright terms: Public domain W3C validator