MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpt2opabovd Structured version   Visualization version   GIF version

Theorem mptmpt2opabovd 7403
Description: The operation value of a function value of a collection of ordered pairs of related elements (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
mptmpt2opabbrd.g (𝜑𝐺𝑊)
mptmpt2opabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpt2opabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpt2opabbrd.v (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
mptmpt2opabbrd.r ((𝜑𝑓(𝐷𝐺)) → 𝜓)
mptmpt2opabovd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpt2opabovd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑔   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝐶,𝑎,𝑏,𝑔
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜓(𝑓,𝑔,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐶(𝑓,)   𝐷(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑉(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpt2opabovd
StepHypRef Expression
1 mptmpt2opabbrd.g . 2 (𝜑𝐺𝑊)
2 mptmpt2opabbrd.x . 2 (𝜑𝑋 ∈ (𝐴𝐺))
3 mptmpt2opabbrd.y . 2 (𝜑𝑌 ∈ (𝐵𝐺))
4 mptmpt2opabbrd.v . 2 (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
5 mptmpt2opabbrd.r . 2 ((𝜑𝑓(𝐷𝐺)) → 𝜓)
6 oveq12 6805 . . 3 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑎(𝐶𝐺)𝑏) = (𝑋(𝐶𝐺)𝑌))
76breqd 4798 . 2 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑓(𝑎(𝐶𝐺)𝑏)𝑓(𝑋(𝐶𝐺)𝑌)))
8 fveq2 6333 . . . 4 (𝑔 = 𝐺 → (𝐶𝑔) = (𝐶𝐺))
98oveqd 6813 . . 3 (𝑔 = 𝐺 → (𝑎(𝐶𝑔)𝑏) = (𝑎(𝐶𝐺)𝑏))
109breqd 4798 . 2 (𝑔 = 𝐺 → (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝑎(𝐶𝐺)𝑏)))
11 mptmpt2opabovd.m . 2 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
121, 2, 3, 4, 5, 7, 10, 11mptmpt2opabbrd 7402 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351   class class class wbr 4787  {copab 4847  cmpt 4864  cfv 6030  (class class class)co 6796  cmpt2 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320
This theorem is referenced by:  wksonproplem  26836  trlsonfval  26837  pthsonfval  26871  spthson  26872
  Copyright terms: Public domain W3C validator