![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptima2 | Structured version Visualization version GIF version |
Description: Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptima2.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
mptima2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 39936 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵)) |
3 | mptima2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | sseqin2 3960 | . . . . . 6 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
5 | 4 | biimpi 206 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = 𝐶) |
7 | 6 | mpteq1d 4890 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
8 | 7 | rneqd 5508 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
9 | 2, 8 | eqtrd 2794 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∩ cin 3714 ⊆ wss 3715 ↦ cmpt 4881 ran crn 5267 “ cima 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-mpt 4882 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: limsupresico 40435 limsupvaluz 40443 liminfresico 40506 |
Copyright terms: Public domain | W3C validator |