MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfi Structured version   Visualization version   GIF version

Theorem mptfi 8433
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptfi (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptfi
StepHypRef Expression
1 funmpt 6088 . . 3 Fun (𝑥𝐴𝐵)
2 funfn 6080 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
31, 2mpbi 220 . 2 (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵)
4 eqid 2761 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54dmmptss 5793 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
6 ssfi 8348 . . 3 ((𝐴 ∈ Fin ∧ dom (𝑥𝐴𝐵) ⊆ 𝐴) → dom (𝑥𝐴𝐵) ∈ Fin)
75, 6mpan2 709 . 2 (𝐴 ∈ Fin → dom (𝑥𝐴𝐵) ∈ Fin)
8 fnfi 8406 . 2 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ Fin) → (𝑥𝐴𝐵) ∈ Fin)
93, 7, 8sylancr 698 1 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2140  wss 3716  cmpt 4882  dom cdm 5267  Fun wfun 6044   Fn wfn 6045  Fincfn 8124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-fin 8128
This theorem is referenced by:  abrexfi  8434  ccatalpha  13586  prdsmet  22397  gsummpt2co  30111  carsgclctunlem2  30712  carsgclctunlem3  30713  breprexplema  31039  istotbnd3  33902  sstotbnd  33906  totbndbnd  33920  rnmptfi  39869  choicefi  39910  stoweidlem39  40778  fourierdlem31  40877  aacllem  43079
  Copyright terms: Public domain W3C validator