Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexgf Structured version   Visualization version   GIF version

Theorem mptexgf 6628
 Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypothesis
Ref Expression
mptexgf.a 𝑥𝐴
Assertion
Ref Expression
mptexgf (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)

Proof of Theorem mptexgf
StepHypRef Expression
1 funmpt 6069 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2770 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmpt 5774 . . . 4 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
4 a1tru 1647 . . . . . . 7 (𝐵 ∈ V → ⊤)
54rgenw 3072 . . . . . 6 𝑥𝐴 (𝐵 ∈ V → ⊤)
6 ss2rab 3825 . . . . . 6 ({𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤} ↔ ∀𝑥𝐴 (𝐵 ∈ V → ⊤))
75, 6mpbir 221 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤}
8 mptexgf.a . . . . . 6 𝑥𝐴
98rabtru 3510 . . . . 5 {𝑥𝐴 ∣ ⊤} = 𝐴
107, 9sseqtri 3784 . . . 4 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
113, 10eqsstri 3782 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
12 ssexg 4935 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
1311, 12mpan 662 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
14 funex 6625 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
151, 13, 14sylancr 567 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ⊤wtru 1631   ∈ wcel 2144  Ⅎwnfc 2899  ∀wral 3060  {crab 3064  Vcvv 3349   ⊆ wss 3721   ↦ cmpt 4861  dom cdm 5249  Fun wfun 6025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039 This theorem is referenced by:  numclwwlk1lem2  27544  esumrnmpt2  30464  mptexf  39956
 Copyright terms: Public domain W3C validator