Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexd Structured version   Visualization version   GIF version

Theorem mptexd 6652
 Description: If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg 6649. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
mptexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
mptexd (𝜑 → (𝑥𝐴𝐵) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mptexd
StepHypRef Expression
1 mptexd.1 . 2 (𝜑𝐴𝑉)
2 mptexg 6649 . 2 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
31, 2syl 17 1 (𝜑 → (𝑥𝐴𝐵) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2139  Vcvv 3340   ↦ cmpt 4881 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057 This theorem is referenced by:  choicefi  39909  axccdom  39933  climeldmeqmpt  40421  climfveqmpt  40424  climfveqmpt3  40435  climeldmeqmpt3  40442  climfveqmpt2  40446  climeldmeqmpt2  40448  climeqmpt  40450  limsupresicompt  40509  liminfresicompt  40533  liminfvalxr  40536  iccvonmbllem  41416  vonioolem1  41418  vonioolem2  41419  vonicclem1  41421  vonicclem2  41422  smflimmpt  41540  smflimsuplem6  41555  uspgrbispr  42287
 Copyright terms: Public domain W3C validator