![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12d | Structured version Visualization version GIF version |
Description: An equality inference for the maps to notation. Compare mpteq12dv 4865. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
mpteq12d.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12d.3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12d.4 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1994 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | mpteq12d.3 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐶) | |
4 | 3 | eleq2d 2835 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
5 | mpteq12d.4 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐷) | |
6 | 5 | eqeq2d 2780 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
7 | 4, 6 | anbi12d 608 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
8 | 1, 2, 7 | opabbid 4847 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
9 | df-mpt 4862 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
10 | df-mpt 4862 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
11 | 8, 9, 10 | 3eqtr4g 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 Ⅎwnf 1855 ∈ wcel 2144 {copab 4844 ↦ cmpt 4861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-opab 4845 df-mpt 4862 |
This theorem is referenced by: esumrnmpt2 30464 smflimmpt 41530 |
Copyright terms: Public domain | W3C validator |