![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptctf | Structured version Visualization version GIF version |
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
mptctf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptctf | ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6079 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | ctex 8128 | . . . 4 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | eqid 2752 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmpt 5783 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | df-rab 3051 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} | |
6 | simpl 474 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝑥 ∈ 𝐴) | |
7 | 6 | ss2abi 3807 | . . . . . . 7 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
8 | mptctf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
9 | 8 | abid2f 2921 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
10 | 7, 9 | sseqtri 3770 | . . . . . 6 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ 𝐴 |
11 | 5, 10 | eqsstri 3768 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
12 | 4, 11 | eqsstri 3768 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
13 | ssdomg 8159 | . . . 4 ⊢ (𝐴 ∈ V → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴)) | |
14 | 2, 12, 13 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴) |
15 | domtr 8166 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ ω) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
16 | 14, 15 | mpancom 706 | . 2 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
17 | funfn 6071 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | fnct 9543 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
19 | 17, 18 | sylanb 490 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
20 | 1, 16, 19 | sylancr 698 | 1 ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 {cab 2738 Ⅎwnfc 2881 {crab 3046 Vcvv 3332 ⊆ wss 3707 class class class wbr 4796 ↦ cmpt 4873 dom cdm 5258 Fun wfun 6035 Fn wfn 6036 ωcom 7222 ≼ cdom 8111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-ac2 9469 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-oi 8572 df-card 8947 df-acn 8950 df-ac 9121 |
This theorem is referenced by: abrexctf 29797 |
Copyright terms: Public domain | W3C validator |