MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1matfsupp Structured version   Visualization version   GIF version

Theorem mptcoe1matfsupp 20655
Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptcoe1matfsupp.a 𝐴 = (𝑁 Mat 𝑅)
mptcoe1matfsupp.q 𝑄 = (Poly1𝐴)
mptcoe1matfsupp.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
mptcoe1matfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Distinct variable groups:   𝑘,𝐿   𝑘,𝐼   𝑘,𝐽   𝑘,𝑁   𝑘,𝑂   𝑅,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑄(𝑘)

Proof of Theorem mptcoe1matfsupp
Dummy variables 𝑐 𝑠 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6241 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑅) ∈ V)
2 mptcoe1matfsupp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2651 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2651 . . 3 (Base‘𝐴) = (Base‘𝐴)
5 simp2 1082 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
65adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼𝑁)
7 simp3 1083 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
87adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽𝑁)
9 simp3 1083 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
1093ad2ant1 1102 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝑂𝐿)
11 eqid 2651 . . . . 5 (coe1𝑂) = (coe1𝑂)
12 mptcoe1matfsupp.l . . . . 5 𝐿 = (Base‘𝑄)
13 mptcoe1matfsupp.q . . . . 5 𝑄 = (Poly1𝐴)
1411, 12, 13, 4coe1fvalcl 19630 . . . 4 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1510, 14sylan 487 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
162, 3, 4, 6, 8, 15matecld 20280 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅))
17 eqid 2651 . . . . . . 7 (0g𝐴) = (0g𝐴)
1811, 12, 13, 17, 4coe1fsupp 19632 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑐 finSupp (0g𝐴)})
19 elrabi 3391 . . . . . 6 ((coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑐 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
2010, 18, 193syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
21 fvex 6239 . . . . 5 (0g𝐴) ∈ V
2220, 21jctir 560 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ((coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0) ∧ (0g𝐴) ∈ V))
2311, 12, 13, 17coe1sfi 19631 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
2410, 23syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) finSupp (0g𝐴))
25 fsuppmapnn0ub 12835 . . . 4 (((coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
2622, 24, 25sylc 65 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
27 csbov 6728 . . . . . . . . . 10 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽)
28 csbfv 6271 . . . . . . . . . . 11 𝑥 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥)
2928oveqi 6703 . . . . . . . . . 10 (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3027, 29eqtri 2673 . . . . . . . . 9 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3130a1i 11 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽))
32 oveq 6696 . . . . . . . . 9 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
3332adantl 481 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
34 eqid 2651 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
352, 34mat0op 20273 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
36353adant3 1101 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
37363ad2ant1 1102 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 eqidd 2652 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (0g𝑅) = (0g𝑅))
3937, 38, 5, 7, 1ovmpt2d 6830 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4039ad4antr 769 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4131, 33, 403eqtrd 2689 . . . . . . 7 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))
4241exp31 629 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4342a2d 29 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4443ralimdva 2991 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4544reximdva 3046 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4626, 45mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅)))
471, 16, 46mptnn0fsupp 12837 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  csb 3566   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316   < clt 10112  0cn0 11330  Basecbs 15904  0gc0g 16147  Ringcrg 18593  Poly1cpl1 19595  coe1cco1 19596   Mat cmat 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-psr 19404  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-ply1 19600  df-coe1 19601  df-dsmm 20124  df-frlm 20139  df-mat 20262
This theorem is referenced by:  mply1topmatcllem  20656
  Copyright terms: Public domain W3C validator