![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version |
Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
suppmptcfin.b | ⊢ 𝐵 = (Base‘𝑀) |
suppmptcfin.r | ⊢ 𝑅 = (Scalar‘𝑀) |
suppmptcfin.0 | ⊢ 0 = (0g‘𝑅) |
suppmptcfin.1 | ⊢ 1 = (1r‘𝑅) |
suppmptcfin.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
Ref | Expression |
---|---|
mptcfsupp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppmptcfin.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | |
2 | 1 | funmpt2 6080 | . . 3 ⊢ Fun 𝐹 |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → Fun 𝐹) |
4 | suppmptcfin.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
5 | suppmptcfin.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑀) | |
6 | suppmptcfin.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
7 | suppmptcfin.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
8 | 4, 5, 6, 7, 1 | suppmptcfin 42662 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) |
9 | mptexg 6640 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V) | |
10 | 1, 9 | syl5eqel 2835 | . . . 4 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V) |
11 | 10 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) |
12 | fvex 6354 | . . . 4 ⊢ (0g‘𝑅) ∈ V | |
13 | 6, 12 | eqeltri 2827 | . . 3 ⊢ 0 ∈ V |
14 | isfsupp 8436 | . . 3 ⊢ ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) | |
15 | 11, 13, 14 | sylancl 697 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) |
16 | 3, 8, 15 | mpbir2and 995 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ifcif 4222 𝒫 cpw 4294 class class class wbr 4796 ↦ cmpt 4873 Fun wfun 6035 ‘cfv 6041 (class class class)co 6805 supp csupp 7455 Fincfn 8113 finSupp cfsupp 8432 Basecbs 16051 Scalarcsca 16138 0gc0g 16294 1rcur 18693 LModclmod 19057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-supp 7456 df-1o 7721 df-er 7903 df-en 8114 df-fin 8117 df-fsupp 8433 |
This theorem is referenced by: lcoss 42727 el0ldep 42757 |
Copyright terms: Public domain | W3C validator |