MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2xopoveqd Structured version   Visualization version   GIF version

Theorem mpt2xopoveqd 7516
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypotheses
Ref Expression
mpt2xopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
mpt2xopoveqd.1 (𝜓 → (𝑉𝑋𝑊𝑌))
mpt2xopoveqd.2 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
Assertion
Ref Expression
mpt2xopoveqd (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝜓(𝑥,𝑦,𝑛)   𝐹(𝑦,𝑛)

Proof of Theorem mpt2xopoveqd
StepHypRef Expression
1 mpt2xopoveq.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpt2xopoveq 7514 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
32ex 449 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
4 mpt2xopoveqd.1 . . 3 (𝜓 → (𝑉𝑋𝑊𝑌))
53, 4syl11 33 . 2 (𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 df-nel 3036 . . . . . 6 (𝐾𝑉 ↔ ¬ 𝐾𝑉)
71mpt2xopynvov0 7513 . . . . . 6 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
86, 7sylbir 225 . . . . 5 𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
98adantr 472 . . . 4 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
10 mpt2xopoveqd.2 . . . . . 6 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
1110eqcomd 2766 . . . . 5 ((𝜓 ∧ ¬ 𝐾𝑉) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1211ancoms 468 . . . 4 ((¬ 𝐾𝑉𝜓) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
139, 12eqtrd 2794 . . 3 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1413ex 449 . 2 𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
155, 14pm2.61i 176 1 (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wnel 3035  {crab 3054  Vcvv 3340  [wsbc 3576  c0 4058  cop 4327  cfv 6049  (class class class)co 6813  cmpt2 6815  1st c1st 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator