![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2xeldm | Structured version Visualization version GIF version |
Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
mpt2xeldm2.f | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
mpt2xeldm | ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2xeldm2.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
2 | 1 | dmmpt2ssx 7405 | . . 3 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) |
3 | elfvdm 6383 | . . . 4 ⊢ (𝑁 ∈ (𝐹‘〈𝑋, 𝑌〉) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) | |
4 | df-ov 6818 | . . . 4 ⊢ (𝑋𝐹𝑌) = (𝐹‘〈𝑋, 𝑌〉) | |
5 | 3, 4 | eleq2s 2858 | . . 3 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ dom 𝐹) |
6 | 2, 5 | sseldi 3743 | . 2 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → 〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷)) |
7 | nfcsb1v 3691 | . . 3 ⊢ Ⅎ𝑥⦋𝑋 / 𝑥⦌𝐷 | |
8 | csbeq1a 3684 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐷 = ⦋𝑋 / 𝑥⦌𝐷) | |
9 | 7, 8 | opeliunxp2f 7507 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ ∪ 𝑥 ∈ 𝐶 ({𝑥} × 𝐷) ↔ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
10 | 6, 9 | sylib 208 | 1 ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ⦋csb 3675 {csn 4322 〈cop 4328 ∪ ciun 4673 × cxp 5265 dom cdm 5267 ‘cfv 6050 (class class class)co 6815 ↦ cmpt2 6817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 |
This theorem is referenced by: mpt2xneldm 7509 nbgrcl 26448 nbgrclOLD 26449 |
Copyright terms: Public domain | W3C validator |