MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2exg Structured version   Visualization version   GIF version

Theorem mpt2exg 7290
Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
mpt2exg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpt2exg ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpt2exg
StepHypRef Expression
1 elex 3243 . . 3 (𝐵𝑆𝐵 ∈ V)
2 elex 3243 . . . 4 (𝐵 ∈ V → 𝐵 ∈ V)
32ralrimivw 2996 . . 3 (𝐵 ∈ V → ∀𝑥𝐴 𝐵 ∈ V)
41, 3syl 17 . 2 (𝐵𝑆 → ∀𝑥𝐴 𝐵 ∈ V)
5 mpt2exg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpt2exxg 7289 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵 ∈ V) → 𝐹 ∈ V)
74, 6sylan2 490 1 ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cmpt2 6692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211
This theorem is referenced by:  mpt2exga  7291  isofn  16482  rmodislmod  18979  eulerpartgbij  30562  hspval  41144  dfrngc2  42297  dfringc2  42343  digfval  42716
  Copyright terms: Public domain W3C validator