![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2ex | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
mpt2ex.1 | ⊢ 𝐴 ∈ V |
mpt2ex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mpt2ex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2ex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mpt2ex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 2953 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | eqid 2651 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 4 | mpt2exxg 7289 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
6 | 1, 3, 5 | mp2an 708 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ↦ cmpt2 6692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: qexALT 11841 ruclem13 15015 vdwapfval 15722 prdsco 16175 imasvsca 16227 homffval 16397 comfffval 16405 comffval 16406 comfffn 16411 comfeq 16413 oppccofval 16423 monfval 16439 sectffval 16457 invffval 16465 cofu1st 16590 cofu2nd 16592 cofucl 16595 natfval 16653 fuccofval 16666 fucco 16669 coafval 16761 setcco 16780 catchomfval 16795 catccofval 16797 catcco 16798 estrcco 16817 xpcval 16864 xpchomfval 16866 xpccofval 16869 xpcco 16870 1stf1 16879 1stf2 16880 2ndf1 16882 2ndf2 16883 1stfcl 16884 2ndfcl 16885 prf1 16887 prf2fval 16888 prfcl 16890 prf1st 16891 prf2nd 16892 evlf2 16905 evlf1 16907 evlfcl 16909 curf1fval 16911 curf11 16913 curf12 16914 curf1cl 16915 curf2 16916 curfcl 16919 hof1fval 16940 hof2fval 16942 hofcl 16946 yonedalem3 16967 mgmnsgrpex 17465 sgrpnmndex 17466 grpsubfval 17511 mulgfval 17589 symgplusg 17855 lsmfval 18099 pj1fval 18153 dvrfval 18730 psrmulr 19432 psrvscafval 19438 evlslem2 19560 mamufval 20239 mvmulfval 20396 isphtpy 22827 pcofval 22856 q1pval 23958 r1pval 23961 motplusg 25482 midf 25713 ismidb 25715 ttgval 25800 ebtwntg 25907 ecgrtg 25908 elntg 25909 wwlksnon 26800 wspthsnon 26801 clwwlknonmpt2 27062 vsfval 27616 dipfval 27685 smatfval 29989 lmatval 30007 qqhval 30146 dya2iocuni 30473 sxbrsigalem5 30478 sitmval 30539 signswplusg 30760 reprval 30816 mclsrcl 31584 mclsval 31586 ldualfvs 34741 paddfval 35401 tgrpopr 36352 erngfplus 36407 erngfmul 36410 erngfplus-rN 36415 erngfmul-rN 36418 dvafvadd 36619 dvafvsca 36621 dvaabl 36630 dvhfvadd 36697 dvhfvsca 36706 djafvalN 36740 djhfval 37003 hlhilip 37557 mendplusgfval 38072 mendmulrfval 38074 mendvscafval 38077 hoidmvval 41112 cznrng 42280 cznnring 42281 rngchomfvalALTV 42309 rngccofvalALTV 42312 rngccoALTV 42313 ringchomfvalALTV 42372 ringccofvalALTV 42375 ringccoALTV 42376 |
Copyright terms: Public domain | W3C validator |