![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2eq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpt2eq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpt2eq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpt2eq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpt2eq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpt2eq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 472 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpt2eq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 472 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpt2eq123dva 6883 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ↦ cmpt2 6817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-oprab 6819 df-mpt2 6820 |
This theorem is referenced by: mpt2eq123i 6885 mptmpt2opabbrd 7418 el2mpt2csbcl 7420 bropopvvv 7425 bropfvvvv 7427 prdsval 16338 imasval 16394 imasvscaval 16421 homffval 16572 homfeq 16576 comfffval 16580 comffval 16581 comfffval2 16583 comffval2 16584 comfeq 16588 oppcval 16595 monfval 16614 sectffval 16632 invffval 16640 isofn 16657 cofuval 16764 natfval 16828 fucval 16840 fucco 16844 coafval 16936 setcval 16949 setcco 16955 catcval 16968 catcco 16973 estrcval 16986 estrcco 16992 xpcval 17039 xpchomfval 17041 xpccofval 17044 1stfval 17053 2ndfval 17056 prfval 17061 evlfval 17079 evlf2 17080 curfval 17085 hofval 17114 hof2fval 17117 plusffval 17469 grpsubfval 17686 grpsubpropd 17742 mulgfval 17764 mulgpropd 17806 symgval 18020 lsmfval 18274 pj1fval 18328 efgtf 18356 prdsmgp 18831 dvrfval 18905 scaffval 19104 psrval 19585 ipffval 20216 phssip 20226 frlmip 20340 mamufval 20414 mvmulfval 20571 marrepfval 20589 marepvfval 20594 submafval 20608 submaval 20610 madufval 20666 minmar1fval 20675 mat2pmatfval 20751 cpm2mfval 20777 decpmatval0 20792 decpmatval 20793 pmatcollpw3lem 20811 xkoval 21613 xkopt 21681 xpstopnlem1 21835 submtmd 22130 blfvalps 22410 ishtpy 22993 isphtpy 23002 pcofval 23031 rrxip 23399 q1pval 24133 r1pval 24136 taylfval 24333 midf 25889 ismidb 25891 ttgval 25976 wwlksnon 26977 wspthsnon 26978 clwwlknonmpt2 27256 grpodivfval 27719 dipfval 27888 submatres 30203 lmatval 30210 lmatcl 30213 qqhval 30349 sxval 30584 sitmval 30742 cndprobval 30826 mclsval 31789 csbfinxpg 33555 rrnval 33958 ldualset 34934 paddfval 35605 tgrpfset 36553 tgrpset 36554 erngfset 36608 erngset 36609 erngfset-rN 36616 erngset-rN 36617 dvafset 36813 dvaset 36814 dvhfset 36890 dvhset 36891 djaffvalN 36943 djafvalN 36944 djhffval 37206 djhfval 37207 hlhilset 37747 eldiophb 37841 mendval 38274 hoidmvval 41316 ovnhoi 41342 hspval 41348 hspmbllem2 41366 hoimbl 41370 rngcvalALTV 42490 rngccoALTV 42517 funcrngcsetcALT 42528 ringcvalALTV 42536 ringccoALTV 42580 lincop 42726 |
Copyright terms: Public domain | W3C validator |