![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt2eq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpt2eq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . . . . 5 ⊢ 𝐸 = 𝐸 | |
2 | 1 | rgenw 3054 | . . . 4 ⊢ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸 |
3 | 2 | jctr 566 | . . 3 ⊢ (𝐵 = 𝐷 → (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
4 | 3 | ralrimivw 3097 | . 2 ⊢ (𝐵 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) |
5 | mpt2eq123 6871 | . 2 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 (𝐵 = 𝐷 ∧ ∀𝑦 ∈ 𝐵 𝐸 = 𝐸)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) | |
6 | 4, 5 | sylan2 492 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∀wral 3042 ↦ cmpt2 6807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-oprab 6809 df-mpt2 6810 |
This theorem is referenced by: dffi3 8494 cantnfres 8739 xpsval 16426 homffval 16543 comfffval 16551 monpropd 16590 natfval 16799 plusffval 17440 grpsubfval 17657 grpsubpropd2 17714 lsmvalx 18246 oppglsm 18249 lsmpropd 18282 dvrfval 18876 scaffval 19075 psrmulr 19578 psrplusgpropd 19800 ipffval 20187 marrepfval 20560 marepvfval 20565 d1mat2pmat 20738 txval 21561 cnmptk1p 21682 cnmptk2 21683 xpstopnlem1 21806 pcofval 23002 rrxmval 23380 madjusmdetlem1 30194 pstmval 30239 qqhval2 30327 mendplusgfval 38249 mendmulrfval 38251 mendvscafval 38254 funcrngcsetc 42500 funcringcsetc 42537 lmod1zr 42784 |
Copyright terms: Public domain | W3C validator |