![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpt20 | Structured version Visualization version GIF version |
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
mpt20 | ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt2 6797 | . 2 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | df-oprab 6796 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} | |
3 | noel 4065 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | simprll 756 | . . . . . . 7 ⊢ ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) → 𝑥 ∈ ∅) | |
5 | 3, 4 | mto 188 | . . . . . 6 ⊢ ¬ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
6 | 5 | nex 1878 | . . . . 5 ⊢ ¬ ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
7 | 6 | nex 1878 | . . . 4 ⊢ ¬ ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
8 | 7 | nex 1878 | . . 3 ⊢ ¬ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)) |
9 | 8 | abf 4120 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))} = ∅ |
10 | 1, 2, 9 | 3eqtri 2796 | 1 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1630 ∃wex 1851 ∈ wcel 2144 {cab 2756 ∅c0 4061 〈cop 4320 {coprab 6793 ↦ cmpt2 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-dif 3724 df-nul 4062 df-oprab 6796 df-mpt2 6797 |
This theorem is referenced by: homffval 16556 comfffval 16564 natfval 16812 coafval 16920 xpchomfval 17026 xpccofval 17029 plusffval 17454 grpsubfval 17671 oppglsm 18263 dvrfval 18891 scaffval 19090 psrmulr 19598 ipffval 20209 marrepfval 20583 marepvfval 20588 d0mat2pmat 20762 pcofval 23028 clwwlknonmpt2 27258 mendplusgfval 38274 mendmulrfval 38276 mendvscafval 38279 |
Copyright terms: Public domain | W3C validator |