![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 |
This theorem depends on definitions: df-bi 197 df-ral 3056 |
This theorem is referenced by: reximia 3148 rmoimia 3550 iuneq2i 4692 iineq2i 4693 dfiun2 4707 dfiin2 4708 eusv4 5027 reuxfr2d 5041 dfiun3 5536 dfiin3 5537 relmptopab 7050 ixpint 8104 noinfep 8733 tctr 8792 r1elssi 8844 ackbij2 9278 hsmexlem5 9465 axcc2lem 9471 inar1 9810 ccatalpha 13586 sumeq2i 14649 sum2id 14659 prodeq2i 14869 prod2id 14878 prdsbasex 16334 fnmrc 16490 sscpwex 16697 gsumwspan 17605 0frgp 18413 psrbaglefi 19595 mvrf1 19648 mplmonmul 19687 frgpcyg 20145 elpt 21598 ptbasin2 21604 ptbasfi 21607 ptcld 21639 ptrescn 21665 xkoinjcn 21713 ptuncnv 21833 ptunhmeo 21834 itgfsum 23813 rolle 23973 dvlip 23976 dvivthlem1 23991 dvivth 23993 pserdv 24403 logtayl 24627 goeqi 29463 reuxfr3d 29659 sxbrsigalem0 30664 bnj852 31320 bnj1145 31390 cvmsss2 31585 cvmliftphtlem 31628 dfon2lem1 32015 dfon2lem3 32017 dfon2lem7 32021 ptrest 33740 mblfinlem2 33779 voliunnfl 33785 sdclem2 33870 dmmzp 37817 arearect 38322 areaquad 38323 trclrelexplem 38524 corcltrcl 38552 cotrclrcl 38555 clsk3nimkb 38859 lhe4.4ex1a 39049 dvcosax 40663 fourierdlem57 40902 fourierdlem58 40903 fourierdlem62 40907 2reurmo 41707 nnsgrpnmnd 42347 elbigofrcl 42873 iunordi 42952 |
Copyright terms: Public domain | W3C validator |